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SUMMARY 

Four problems re la ted  t o  high frequency wave propagation i n  blood 

vessels have been investigated. 

j u s t i fy  a se l f  contained treatment f o r  each one. 

They are  suf f ic ien t ly  different  t o  

A simple p l a t e  theory model is  u t i l i zed  t o  demonstrate t h a t  Korotkoff 

sounds generated during the systol ic  phase of the auscultatory measurement 

of the blood pressure can be interpreted as a phenomenon of dynamic 

i n s t a b i l i t y  of the p a r t i a l l y  collapsed brachial  a r te ry .  Aprevious study 
of Korotkoff sounds a t  diastole  indicated tha t  the segment of the brachial  

a r te ry  affected by the pneumatic cuff i s  dynamically unstable whenever the 

intraluminal pressure f a l l s  suf f ic ien t ly  below the cuff pressure. Under 

conditions of i n s t a b i l i t y  the brachial  segment ac ts  l i ke  a mechanical 

amplifier capable of magnifying cer ta in  perturbations inherent i n  the 

a r t e r i a l  pressure pulse beyond the  audibi l i ty  threshold. 

i n s t a b i l i t y  phenomenon i s  a l so  hypothesized as the cause of the sounds 
heard at  systole  when the intraluminal pressure exceeds suf f ic ien t ly  the 

cuff pressure. 

obtained from experimental studies on physical models. For large curva- 

tures of the w a l l  and cer ta in  types of f l u i d  perturbations, the predicted 

s t a b i l i t y  boundaries cannot be explained on physical grounds at the present 

t i m e  and must be reexamined i n  a separate investigation. 

A similar 

The theory presented agrees i n  many respects with evidence 

The equations of the theory of e l a s t i c i t y  f o r  a transversely isotropic  

cylinder are  applied t o  study the influence of w a l l  thickness and material  

properties on the phase veloci t ies  i n  a f l u i d  f i l l e d  cylinder. 

i s  r e s t r i c t ed  t o  ax ia l ly  symmetric waves and unprestressed cylinder walls. 

It shows t h a t  f o r  distension and axial waves, the predicted phase veloci t ies  
agree closely with those from t h i n  shell theory. The phase veloci t ies  of 

distension waves exhibi t  a dependence of thickness t o  mean radius r a t i o  

t h a t  i s  i n  close agreement w i t h  t he  Moens Korteweg equation. 

of transversely isotropic  walls on axial phase veloci t ies  i s  s m a l l ,  but i s  

considerable f o r  distension waves.' 

i n  the carot id  arteries of anesthetized dogs suggest t ha t  the circumferential 

modulus can exceed the axial. by as much as 200%. 

The analysis 

The influence 

Experimentally observed phase veloci t ies  
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To detect  whether s m a l l  deviations from a c i rcu lar  cross section 

can account f o r  a def in i te  trend i n  the  phase veloci t ies ,  the analysis 

of wave propagation i n  a cylinder of e l l i p t i c  cross section i s  under- 

taken. The assumptions made are  not val id  for large eccent r ic i t ies  and 

the one waveform from which data  i s  obtained i s  t h a t  which converges t o  

the ax ia l ly  symmetric case when the e l l i p se  tends t o  a c i r c l e .  

numerical r e s u l t s  show an extremely small influence of eccentr ic i ty ,  at 

l e a s t  for values less than 0.5. 

The 

A number of t h i n  s h e l l  theories proposed f o r  the analysis of pre- 

s t ressed th in  cylinders are reviewed i n  regard t o  t h e i r  use for the pre- 

dict ion of the  wave transmission properties of blood vessels. The 

importance of accounting f o r  the stress resu l tan ts  due t o  the transmural 

pressure and t h e i r  rotat ions induced by the s h e l l  deformation i s  i l l ua -  

t r a t e d  by showing t h a t  t h e i r  neglect r e su l t s  i n  physically meaningless 

r e su l t s  f o r  tors ion waves. An approximate theory allowing f o r  large 

s t r a ins  only i n  the prestressed s t a t e  i s  given. The resu l t ing  displace- 

ment equilibrium equations are  nonself aajoht ,  but t h i s  i s  shown t o  have 

a negligible e f f ec t  f o r  the physiological problems of immediate in t e re s t .  
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INTRODUCTION 

The study of wave propogation i n  the major blood vessels of 

mammals is, f o r  the theoretician,  a subject of considerable complexity. 

The s igni f icant  difference between the problems of biomechanics and those 

of metal l ic  and other i ne r t  s t ructures  is  i n  the material  properties.  

The d i f f i c u l t i e s  of measuring the behavior of even loca l  segments of the 

cardiovascular system i n  a l i v ing  mammal without markedly influencing the 

outcome by anesthetics,  response t o  traumas, o r  in te r fe r ing  w i t h  incredibly 

complex metabolic and control mechanisms, are  immense. Two of the advant- 

ages a spec ia l i s t  i n  c lass ic  applied mechanics has over a researcher i n  

biomechanics are the a b i l i t i e s  t o  measure material  properties and define 

an i n i t i a l  o r  s t ress -s t ra in  f r ee  s t a t e  t ha t  is  i n  the neighborhood of 

those being investigated. For example, i n  metal she l l  s t ructures  a t  room 

temperature, material  properties of small samples t h a t  apply d i r ec t ly  t o  

the analysis can be found a t  a l l  but the highest s t r a i n  ra tes ,  with con- 

siderable accuracy. Excising segments of a blood vessel and using these 

material  properties can lead t o  large errors. A change in  the mean pres- 

sure i n  segments of the ao r t i c  arch, carotid sinus e tc . ,  t r i gge r  barorecep- 

t o r s  t h a t  r e s u l t  i n  changes of cardiac output. Subtle chemical changes 

r e su l t  i n  vasoconstriction or vasodilation, leading t o  huge changes in  

e l a s t i c  s t i f fnes s  of par t s  of the system, par t icu lar ly  the a r t e r io l e s  j 

resu l t ing  i n  changes of the prestressed s t a t e ,  throughout much of the 

system. No such d i f f i c u l t i e s  b e f a l l  most of the investigations of c l a s s i ca l  

1 



2 .  

applied mechanics. The second d i f f i c u l t y  facing the analyst of cardiovascular 

problems i s  the  defining the prestressed state and the influence of sur- 

rounding t issues ,  muscle, bone e t c .  The mean s t r a i n s  i n  many a r t e r i e s  

are  of the order 0.3, a t  l e a s t  an order of magnitude la rger  than considered 

i n  v i r t u a l l y  a l l  engineering shell st ructures .  Also the surrounding t i s sue  

beds, f o r  example, in te rac t  with the vessel  wall i n  a manner that i s  d i f -  

f i c u l t  t o  assess accurately. 

Since so  much remains t o  be discovered about blood vessel  wall 

behavior it was considered that any serious attempt t o  account f o r  t h e i r  

conjectured behavior was doomed t o  f a i lu re  f o r  two reasons. 

of our lack of basic  knowledge and secondly because the resu l t ing  mathe- 

matical complication of the analyses would v i r t u a l l y  preclude the extrac- 

t i on  of numerical data. 

was tha t  the wall material  would be t rea ted  as  a physically e l a s t i c  sol id  

and the blood could be adequately represented f o r  our par t icu lar  needs 

as  an inviscid,  incompressible, Newtonian f lu id .  

F i r s t l y  because 

Therefore a basic  assumption of a l l  four chapters 

The four chapters are  addressed t o  subjects that are  su f f i c i en t ly  

d i f fe ren t  t o  warrant each being completely se l f  contained with i t s  own 

notation, references and figures.  

igation of an e l a s t i c  walled f l u i d  container t h a t  can be considered as a 

simple model of the behavior of the brachial  a r t e r y  with a cuff around 

the arm a t  pressures near sys to l ic .  

evidence could be obtained t o  support o r  invalidate the hypothesis t h a t  

the Kortkoff sounds a t  systole,  that are  heard by a physician taking blood 

pressure, are a manifestationof f lu id-s t ruc tura l  i n s t a b i l i t y  induced by 

the cuff pressure. 

Chapter 1 is  a dynamic s t a b i l i t y  invest- 

The in ten t  w a s  t o  see what available 
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The theory of ro ta t iona l ly  symmetric waves i n  a c i rcu lar  c y l h d e r  

are  studied i n  Chapter I1 using the theory of e l a s t i c i t y  t o  study the 

relat ionship of these r e su l t s  t o  those of t h i n  (Kirchoff-Love) s h e l l  theory 

and the influence of wall thickness and t ransversely isotropic  wall pro- 

per t ies .  

I n  many s i tua t ions  t i s sues  exert  a force on the blood vessels 

t h a t  tend t o  d i s t o r t  the cross section from i t s  c i rcu lar  configuration. 

Chapter I11 addresses the problem of the influence of a s l i g h t l y  e l l i p t i c  

cross section on t h e  phase ve loc i t ies .  

The f i n a l  chapter is  a review of various th in  she l l  theories  t h a t  

were developed f o r  the study of metall ic she l l s  and their application t o  

the study of waves i n  prestressed c i rcu lar  cylinders. Some of the assump- 

t ions  on which they are based are  discussed and t h e i r  influence on the 

phase ve loc i t ies  of the three types of waves of primary physiological 

i n t e re s t  a re  i l l u s t r a t ed .  



CHAPTER I 

KOROTKOFF' SOUNDS AT SYSTOLE, A PHENOMEXON (XF DYNAMIC MSTABILITY 

1.1. Introduction. 

Anliker and Raman 113 have hypothesized the cause of the Korotkoff 

sounds a t  d i a s to l i c  pressure a s  a dynamic i n s t a b i l i t y  of f l u i d  induced 

osc i l la t ions  i n  a c i rcu lar  tube. A t  sys to l ic  pressure the assumption of 

the a r t e r y  a s  a c i rcu lar  tube is, of course, untenable since it i s  v i r t u a l l y  

occluded. A t  pressures i n  the neighborhood of systol ic ,  the a r t e r y  cross 

section i s  markedly f la t tened,  (see Fig.  l a )  having a very small radius 

of curvature a t  twodiametricallyopposite points and i s  r e l a t ive ly  f l a t  

over most of i ts  prof i le  between these corners. I n  the regions of large 

changes of curvature the a r t e r y  i s  much s t i f f e r  than elsewhere and t h i s  

f ac t  leads us t o  the model we s h a l l  use i n  an attempt t o  show tha t  Korotkoff 

sounds a t  sys to l i c  pressure are a l so  a manifestation of dynamic i n s t a b i l i t y .  

Th i s  analysis i s  a continuation and extension of that by Raman [21, [31 

i n  which the experimental and i n i t i a l  theore t ica l  work i s  described. 

The system w e  intend t o  analyse i s  shown i n  Figure lb .  We 

assume t h a t  the two regions of large curvature can be replaced by r ig id  

walls and t h a t  the remainder of the a r t e r y  can be modelled as  two p la tes  

which can undergo large displacements normal t o  t h e i r  surfaces. 

these p la tes  a re  subjected t o  ax ia l  tension, t o  represent the ax ia l  s t r e t c h  

I n i t i a l l y  

of the a r t e r i a l  wall and steady s t a t e  plus perturbation transmural pres- 

sures. The analysis follows the well known techniques f o r  such s i tua t ions .  

We assume the s t resses ,  deflections, pressures e t c .  consist  of two compon- 

ents,  one quasi-s ta t ic  which accounts f o r  the a x i a l  s t r e t ch  and transmural 

4 



pressure and the second which analyses the perturbations about the quasi- 

s t a t i c  configuration. 

s t a t e  is  that the pulse frequency is  about 1 cps while the human ea r  can 

on ly  perceive perturbations with frequencies greater than 20 cps. 

The jus t i f i ca t ion  f o r  the quasi-s ta t ic  prestress  

1.2. Quasi-Static S t ress  i n  the Artery at Pressures Near Systolic.  

Due t o  %he extremely complex const i tut ive laws needed t o  accurately 

define the behavior of animal t i s sues  over any but a small range of load- 

ings, a general theore t ica l  analysis of maay such problems is  extremely 

d i f f i cu l t .  Even computing the stresses in a human brachial  a r t e r y  when 

it has been compressed by a cuff t o  E a s u r e  sys to l i c  pressure, appear, 

a t  the present t i m e ,  t o  be v i r t u a l l y  insurmountable. The deflections 

involved are  almost twice the  radius of the a r t e r y  i n  i t s  natural  pre- 

stressed state, f o r  much of the wall and the influence of the surrounding 

t i s sues ,  bones and ligaments cannot be estFmated quantitatively.  Thus we 

make no attempt t o  compute the quasi-s ta t ic  stresses i n  the ar tery,  o r  t o  

quant i ta t ive ly  relate the deformed configuration t o  the cuff pressure pro- 

ducing it. 

analysis  of shell type s t ructures  are current ly  available,  the assumptions 

on which they are based are too far removed from the problem a t  hand t o  

be physically meanbgful. I n  shell theory we are  almost always able t o  

define an i n i t i a l  stress or  s t r a i n  f ree  state and proceed systematically 

t o  derive the quasi-s ta t ic  prestress  stresses and strains. 

it is not reasonable t o  define a knm state, from which t o  initiate the 

analysis of the pre-s t ress  state. 

While many sophisticated methods f o r  the "large" def lect ion 

In  our problem 



6 .  

To make our problem t rac tab le  , w e  shall proceed as follows. 

It is  w e l l  established that l i k e  almost a l l  other a r t e r i e s ,  the brachial  

is under considerable ax ia l  s t r e t ch  with strains of order 0.2. W e  

r e s t r i c t  our investigation of the quasi-static prestressed state t o  a 

def ini t ion of the transverse displacement, the  ( t ens i l e )  ax ia l  s t r a i n  

and the (compressive) l a t e r a l  in-plane s t r a i n  exhibited by a rectangular 

menibrane. 

mitted by the t i s sue  produces the  l a t e r a l  s t r a i n  and displacements specified.  

However, because of the lack of the consti tutive law, the relat ionship 

between the applied cuff pressure and the  induced transverse displace- 

ment o r  l a t e r a l  s t r a in ,  is unknown. 

and the qual i ta t ive discussion i n  Section 1.8, t o  provide the  connection 

between shape of the a r t e r y  cross section and the  cuff' pressure. 

experimental data obtained on a model of the brachial  a r t e r y  in  [ 2 ] ,  [ 3 ]  

and unpublished Fnvivo studies show that the a r t e r y  is v i r t u a l l y  occluded 

a t  cuff pressures only s l i g h t l y  eibaye sys to l i c  and provides the rat ionale  

f o r  t he  choice of t he  theore t ica l  model. We must now consider the 

response t o  small osc i l l a to ry  pertulibations superbposed on the quasi 

static t r a n s m r a l  pressure. 

This highly idealized model infers that the cuff pressure t rans-  

We r e l y  on experimental evidence 

The 

1.3.  OscillaEions About the Deformed Equilibrium Sta te .  

Since we are stddying the vibratioris of the  @la te  r e l a t ive  t o  

the deformed posit ion induced by the static transmural pressure, we must 

use geometrically non-linear p la te  theory. 

a re  negligible compared t o  uni ty  and u t i l i z e  theKarman equations which 

are well known t o  be (see 141, p. 417), 

We assume that the (rotationsf 
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and 

where 

o d  o d  d Let us write F = F 3. F , w = w + w , where Fa and w are  the s t r e s s  

function and transverse displacements induced by the pressure perturba- 

t ions.  The perturbation quant i t ies  are considered t o  be small enough 

f o r  t h e i r  products and those of t h e i r  derivatives, t o  be neglected. 

Substi tuting in to  (1) and (2) and separating the "s ta t ic"  and "perturbed" 

equations we have f o r  the former, the nonlinear equations f o r  the s t a t i c  

s t resses ,  which w i l l  be ignored since they do not describe the physical 

s i tuat ion,  as previously mentioned. 

The equations f o r  the dynamic response follow immediately and 

are  

2 0 2 d  2 0 2 d  a w a w  a a w ------ 
a x y  a x b y  ax2 ay2 ay2 ax2 V4Fd = [ 

and 

2 o 2 db a2 F~ 82 wd p a* wd a2 FO a2 wd a +--+--+-- a F 
at2 ay2 ax2 ax2 ay2 ax2 ay2 

2 a w a ~  +--- a2 wo a2 F~ 2a2 FO awd (4) 2 --y--xzEi ay2 ax 
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Because the s t a t i c  s t r e s s  system is independent of x, w e  have 

awo/ax = 0, which introduces considerable simplification i n t o  ( 3 )  and (4 ) .  

Now we must consider the s t a t i c  stress resu l tan ts  N = ha F /ax2 and 

N: = ha2Fo/ay2 which const i tute  the nonvanishing coeff ic ients  of (3)  and 

0 2 0  
Y 

(4) * 
To study the quasi-s ta t ic  s t r a i n  d is t r ibu t ion  w e  simplify the 

very complex physical s i t ua t ion  a s  follows. 

be independent of the ax ia l  coordinate and they a r e  considered t o  consis t  

of two components (i) a x i a l  s t r e t ch  which i s  always t e n s i l e  (ii) lateral  

i n  plane s t r a i n  which i s  prescribed. For i n s t a b i l i t i e s  t o  develop, w e  

expect large compressive la teral  s t r a ins  w i l l  be needed t o  overcome the 

influence of the  axial  s t r e t ch  and the  poss ib i l i ty  of extremely large 

amplitude buckles arises. We invoke whatever t i s sue  forces are required 

t o  maintain t h e  p la te  i n  the  posit ion specified by w and the  inplane 

s t r a ins  cX 

but  the actual  s i tua t ion  i s ,  as previously mentioned, beyond solut ion and 

it i s  convenient t o  postulate a quasi-s ta t ic  state i n  which the e f f ec t s  

of prescribed inplane s t ra insand transverse def lect ion are a t  least 

pa r t i a l ly  isolated.  

dations" forces can grea t ly  s t a b i l i z e  plates .  

These stresses are taken t o  

0 

0 and E . T h i s  specif icat ion i s  admittedly somewhat f i c t i t i o u s  0 

Y 

It i s  w e l l  known t h a t  extremely small "e l a s t i c  foun- 

Hence w e  assume t h a t  the quasi s t a t i c  def lect ion of the membrane 

0 can be represented by a half  sine wave, namely w = w cos rry and 

u = v s i n  2q. The r e l a t ion  between w and v can be obtained by 

noting (e41 p. 419) that the  s t r a i n  energy f o r  a membrane subjected t o  a 

constant transverse force NO i s  

0 
0 

0 0 0 

Y 



v =  1 2 $ 1/2 [(gS+g(e) 0 2  + ; ( g ) p y  0 %  

2(1-v ) 4 2  

+ N ; s  1 /2  [!&+;($>'].. 0 . 
4 2  

Inserting the displacement expressions and carrying out the integrations 

we find 

2 0 2 2  
0 0  

2 
3.t 

2 2 32 2 -  v =  
2(1-v ) 

Usfng theorem of Minimum Potential Energy we have 

2 2 aV 
3.t 2 [4v0 - $1 = 0 . avo = 2(1-v ) 

Thus 

From the stress-strain and strain-displacement laws we have 

and 

2 2  
r l w  =.++., 0 - 
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Hence 

a2Fo 

ax 
and - - a2Fo 

2 - K2 ay" = K1 

where 

and 

This  demonstrates tha t  the  static stress resu l tan ts  are constants and 

subst i tut ing ( 5 )  i n t o  ( 3 )  and (4) and making use of t h e  f a c t  t h a t  awo/ax = 0 

, w e  see tgat ( 3 )  and (4) are simplified t o  

2 0  2 d  
V F  = - - -  4 d  d w  a w  

d2y2 ax2 

and 

?wd = 5 h [T Pd - p 2 a2wd + Kl 7 a2wd + K2 3 a2wd +-- a2wo a2~;] . (7 )  ax ay2 ax 

W e  note t h a t  each of these equations contain one variable coeff ic ient  and 

it does not appear feasible t o  simplify the equations fur ther .  

var iable  coeff ic ient  terms a l s o  provide t h e  coupling between the two equa- 

t ions.  

equations of the f l u i d  i n  contact wi th  the walls. 

f l u i d  motion. 

These 

The form of the  solut ion is  dictated,  t o  a la rge  extent by the 

L e t  us consider t h e  
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1.4 .  Equations of t he  Fluid. 

For the  incompressible inviscid f l u i d  flowing down the  i n t e r i o r  

of t he  tube shown i n  Fig. 1, we have: 

(i) Equation of Continuity 

(ii) Eulers equation f o r  t h e  pressure i n  l i nea r i ze  poten t ia l  flow i s  

If w e  assume t h a t  the  f l u i d  perturbation consis ts  of a d is tur -  

bance of frequency LS and wave number k, propagating i n  the a x i a l  

direct ion,  we can w r i t e  the  perturbation poten t ia l  as: 

$(x,y,z,t) = ~ ( y , z )  Sin(at-kx) . 

Then, f o r  t he  perturbing pressure w e  have, 

d 
p = pf Q(y,z> (a-Uk) Cos(at-kx) 

Now the  lower l i m i t  of t he  human audible range and hence Korotkoff 

sounds, i s  about 20 cps at it i s  shown i n  [l] t h a t  the  dispersion relat ionship 

f o r  t h i s  type of blood flow problem is 

dimensional quantit ies.  

x = 5 /p where the  bars denote G 
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where fi/E 

the  wave's group velocity, which i s  about one order of magnitude less than 

unity. Therefore w e  reduce (9) t o  

i s  the r a t i o  of the  blood velocity i n  the  a r t e ry  t o  t h a t  of 
G 

d ab P 

This provides a simplification t h a t  w i l l  be discussed when w e  

consider the s t a b i l i t y  boundary. 

(iii) 

i n  the  z direct ion 

Kinematic boundary condition re la t ing  the f l u i d  and wall veloci t ies  

Clearly (14) i s  approximate f o r  large deflections , since the rigorously 

correct boundary condition involves veloci t ies  normal t o  the p la te  mid- 

surface. It i s  important t o  note t h a t  i n  the kinematic condition w e  a r e  

matching fluid and wall ve loc i t ies  a t  the  deflected equilibrium position 

defined by z = wo - + c/2 f o r  the upper and lower walls respectively. 

( i v )  

component of the  f l u i d  velocity vanish, i .e . ,  

The boundary condition a t  the  r i g i d  walls requires t h a t  the normal 

= o  
y=+1/2 

( 



Substi tuting (10) i n t o  (8) w e  obtain 

L e t  us put 

i n  the  usual manner, (16) can be wr i t t en  as  

@(y,z) = Y(y) Z(z). Thus using the  separation of variables 

d2Y/dy2 - k2 d2Z/dZ2 2 - - - r  Y 

where r2 i s  a real posit ive constant, t o  be determined, and we may write 

!d(x,y,z,t) = (A1 Cos ry + B1 Sin I 'y)(A2 Cosh Az + B2 Sinh Az) Sin(&-kx) 

(18) 

where A = [ r  + k ] 1'2 and Ai and Bi are a rb i t ra ry  constants. If 

w e  put B2 = 0, the potent ia l  is  symmetric i n  z, while A2 = 0 yields 

a solution antisymmetric i n  z. 

1.5. Formulation of the  Solution. 

Having the form of the  f lu id  potent ia l  function, w e  can now 

proceed t o  the  corresponding plate  motion. 

Using (18) i n  the  kinematic boundary condition, w e  see tha t  the 

p la te  transverse displacement must s a t i s f y  
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d A w (x,y,t) = - ( A ~  COS ry + B~ Sin ry) 
0 

X {A2 Sinh A(wo + g) + B2 Cosh A(wo + E)] Cos(at-kx) (19) 

The four arbitrary constants in (18) and (19 )  must be reduced 

to one, prior to derivation of the eigenvalue problem. 

by distinguishing modes that are symmetric or antisymmetric about the 

x-y and x-z planes and considering each of the resulting four types of 

perturbations separately. Since wo is a function of y, this expression 

is non-linear in y. However, the Galerkin method is to be used to reduce 

the final equations t o  a classic eigenvalue formulation. 

This is accomplished 

Let us now turn our attention to demonstrating huwthe four arbi- 

trary constants are reduced to one, depending on the symmetry of the partic- 

ular fluid perturbation. To enforce the vanishing of the displacement 

(and fluid velocity) in the corners we must require that d 1 
w (x,y = z, t) 

equal zero. 

A1 

B1 

For non-trivial solutions we must have either r = 2mfi 

A1 = 0 and the displacement is antisymmetric in y, or I' = (2m+l)sr in 

which case, B1 = 0 and the displacement is symmetric function of y. 

Thus we can consider four separate cases of fluid perturbations and the 

in which case, 



resu l tan t  response, 

from the problem by 

depending on which a rb i t r a ry  constants 

the symmetry assumed, In  each case w e  

a r e  eliminated 

have only one 

a rb i t r a ry  constant defining the  perturbation f l u i d  potent ia l  and plate  

displacement amplitudes. The form of the p la te  stress function Fd can 

be seen from (6) and (7) t o  be the  same as wd, except f o r  a d i f fe ren t  

a rb i t r a ry  constant. 

W e  a r e  now a t  the  stage where these expressions f o r  8, Fd and 

wd must be substi tuted i n t o  (6) and (7) and Galerkins method used t o  

obtain the  frequency determinant. To do t h i s  it i s  convenient t o  consider 

the cases of A1 = 0 and B1 = 0 separately and it is useful t o  summarize 

the expressions tha t  are t o  be substi tuted i n t o  (6) and (7) 

d w (x,y,t)  = BY Y Sin 2mrry Cos(at-kx) f o r  AI = 0 

f o r  B = 0 1 = A T  Y Cos(2m+l)rry Cos(at-kx) 

d F (x,y,t) = Cf \y Sin 2mq Cos(at-kx) f o r  A1 = 0 

(21) 
= DZ Y Cos(2m+l)rry Cos(&-kx) f o r  Bl = 0 

B p  
@ ( X , y , Z , t )  = - A Sin 2mscy {A2 Cosh Az + B2 Sinh Az] Sin(at,kx) for A1=O 

A?" 
- -  Cos(2m+l)ny {A2 Cosh Az + B2 Sinh Az) Sin(&-kx) - A  f o r  BL=O 

o c  where Y = A2 Sinh A(+ w - + z) + B2 Cosh A(+ - wo - + g) and w e  sha l l  la ter  - 
o c  C use R = A2 Cosh w - + 5)  + B2 Sinh A(+ - wo - + z) . 
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Before w e  continue with our derivation of the frequency deter- 

minant, l e t  us consider i n  a l i t t l e  more d e t a i l  the  differences t h a t  

depend whether w e  admit perturbations t h a t  are symmetric or  antisymmetric 

i n  z. In  the  former case A2 = 0 and Y, takes on the form 

o c  
Y = B2 Cosh A(+ - w - + p )  

0 = B2(Cosh !k Cosh Aw + Sinh Sinh Awo) 2 2 

when the  two signs are the  same 

0 
= B2(Cosh Cosh Aw - Sinh Sinh Awo) 2 2 

when the  two signs d i f f e r  . 

In  both these s i tuat ions the  quasi s t a t i c  deflections are symmetric 

0 i n  z and (22b) i s  merely (22a) with a change of sign i n  w . Or saying 

t h i s  i n  another way (22a) represents outward deflection and (22b) an inward 

deflection. n u s  u l t i l i z ing ,  say, (22a) f o r  posit ive and negative w , 
yields  a l l  the  solutions symmetric i n  

0 

z and e i the r  (22a) a r  (22b) satis- 

f ies  the 

similar , 
signs we 

boundary conditions a t  both 

The s i tua t ion  

as w e  can now 

have, f o r  B2 

f o r  solutions 

demonstrate. 

= 0, 

o c  Sinh A(w + p )  = Sinh E Cosh Awo 2 

f lex ib le  walls. 

antisymmetric i n  z i s  en t i r e ly  

Consider a l l  four oombinations of 

Ac 
2 + Cosh - Sinh Awo 



(23d) 
o c  hc hc 

2 2 Sinh A(-w - 5) = - Sinh - Cosh Awo - Cosh - Sinh Awo . 

Attempting to simultaneously satisfy the boundary conditions at 

- 2  
o c  both w +-, we do not obtain identical pairs as in the previous case 

but two terms that differ only in sign, as must occur for the antisym- 

metric situation. 

and (23~) constitute the other pair with a change of sign in 

we need use only one form in the ensuing calculations and utilize positive 

and negative initial displacments to obtain all the solutions. 

Combining (23a) and (23d) we have one pair and (23b) 

wo and again 

Substituting (21) into (6) and (7) we obtain for A1 = 0 

Sin 2 m q  $ >'> Sin 2mJry - 2 fib - a2w0 

dY2 

and 

2 dW0 2 0  
k2Y Sin 2 m q  C* 1 + [k4 + 2k2 ( 2 m ~ r ) ~  - A ( F  y} sin 2mq 

dY 
D 

2 2 Pf + p)  cr Y Sin 2mq - Klk Y Sin 2 m q  
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where 

2 0  2 
(2mlr) 4 Y - 6(2m3r) 2 RA 2 d2wo - 6(2m11)~ YA (-p d w  ) + & A 3  ( dy@)2 5 

dY 

d2wo 0 2 0  2 0 2  
+ YA 4 (3 dwo >" + 3YA2 (2) + 4y A2 + fin 4. } Sin 2mxy 

dy2 dY 

+ 4(2mlr) YA- d3w0 } cos 2mq . 
dY3 

I f ,  i n  the above expressions w e  put B = 0 we obtain the  solution t h a t  

i s  symmetric i n  z (see (21)) .  Likewise A2 = 0 yields  t h e  solution 

anitsymmetric i n  z. I n  writing down the  frequency eqmtion w e  s h a l l  

assume the former choice i s  used, but w e  note t h a t  t o  obtain the  l a t te r  

solution w e  j u s t  replace Sinh(Acl2) by Cosh(Ac/2) and vice versa, 

wherever they appear. 

2 

O t  obtain the frequency determinant, multiply (24) by Sin 2mq 

and integrate  from -112 t o  +1/2. This s tep  leads t o  many integrals  of 

which the following may be considered typical ,  

112 

- 112 
J Sin2 2 m q  Cosh A(wo + E) dy 

Ac 112 2 Ac 112 2 
Sin 2mxy Cosh Awo dy + Sinh - Sin 2 m q  Sinh Awo dy. 2 - 112 

= Cosh - J 
- 112 2 



W e  dea l  with these in tegra ls  by noting t h a t  151 

and 

0 
Sinh Aw = Sinh(Awo Cos q) 

where ( n/2Awo) 112 In+l/2(A~o) are ModZf ied Spherical Bessel functions 

of t he  f i r s t  kind and Pn(Cos q) are the  Legendre polynomials. Thus w e  

can write, f o r  example 

where 

and 
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The i n f i n i t e  sums i n  the  I in tegra ls  must be truncated i n  
j 

a l l  numerical calculations and for tunately it can be shown t h a t  the  con- 

vergence i s  qui te  rapid over t he  range of Aw with which w e  are concerned. 

Expanding the  Modified Spherical Bessel functions w e  have, f o r  example 
0 

Since A i s  order ten  or less and w < 0.3 i n  the  work presented, the 

expansions f o r  t he  M.S.B.F. were truncated a t  

terms were considered i n  each of the summations f o r  the  I in tegra ls .  

A few check cases showed the s t a b i l i t y  boundaries were insensi t ive t o  these 

numerical approximations. 

0 
8 

(Aw,) and only three 

j 

There are i n  f a c t  eighteen such in tegra ls  t h a t  arise i n  t h i s  

problem, many of which are functions of m, nine involving the  even 

Legendre polynomials and nine the odd. The nine in tegra ls  involving y 

w i l l  be denoted by I$j+l (m,n) where j = 0, 1, 2, . .. , 8 and a r e  

1/2 2 
Ip(m,n) = J Sin 2mrty P ~ ( C O S  ny) dy 

4 2  

112 2 2 I*(m,n) = J Sin 2mny Sin ny P ~ ( C O S  x y )  dy 
3 - 1/2 

2 
1/2 

- 1/2 
I*(m,n) = J Sin 2mzy COS ny P ~ ( C O S  xy) dy 5 
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1/2 
I*(m,n) = J 
7 4 2  

1/2 

- 1/2 
I*(m,n) = J 9 

I* (m,n) = J 
-1/2 11 

1/2 

- 1/2 
I* (m,n) = J 1.3 

1.b 
I* (m,n) = j’ 
15 4 2  

1/2 
I* (m,n) = J 
17 4 2  

Sin 2m3-t~ Cos 2m3-t~ Sin ,-cy Pn(Cos g ~ )  dy 

2 2 Sin 2msy Sin sy Cos rs;y P (Cos m) dy n 

2 4 Sin 2m3-t~ Sin T C ~  Pn(Cos a)  dy 

2 2 Sin 2msy COS Pn(cos a)  dy 

Sin 2msy COS 2m3-t~ Sin 3 P ~ ( C O S  a) dy 

Sin 2mm COS 2msy Sin a COS sy Pn(cos a)  d;Y . 
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where we have u t i l i zed  the  shorthand S f o r  Sinh(Ac/2) and C f o r  

Cosh(Ac/2). The second (equilibrium) equation i s  

(coefficient of C* i n  the above eq.)  - 5 h ((2 + P) 0 2 {IIC + 12S) 
1 

- Klk 2 {I,S + 12C) + K2(-(2mfi) 2 {I,S + 12C) + fl 2 (AW,) 2 {Ijs + 14c? 

2 - TC AW {I C + 16S) B2(2mrr) TCAW (I C + 18S)) 
0 5  0 7  

h 
D 0 5  - - (krr)2 w { I  S + 16C] C r  = 0 . 

There appears t o  be no hope f o r  a closed form solution of the  

frequency determinant and a d i g i t a l  computer program mus t  be r e l i ed  upon 

t o  perform the bulk of the ari thmetic.  The procedure i s  as follows: 

(i) Choose a value of m and in se r t  the  appropriate I integrals .  

( i t )  With u = 0, solve the determinant f o r  a succession of values of 
j 

2 

k, taking note of those values f o r  which the  determinant vanishes. 

They provide the s t a b i l i t y  boundary f o r  perturbations antisymmetric 

i n  y and symmetric z. The background t o  using u = 0 as a 

s t a b i l i t y  c r i t e r ion  i s  reviewed i n  [l]. 

2 

Next w e  must consider the  case of perturbations t h a t  are symmetric 

I' = (2rn+l)lr, which i s  very similar t o  the previous functions of y, namely 

case with the  following exceptions: 

(i) Replace Sin(2mq) and Cos(2mn-y) by Cos(2m+l)scy and Sin(2m+l)q 

respectively wherever they occur. This a f f ec t s  only the I+j(m,n) 

integrals .  
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(ii) 

(iii) 

Replace (2msc) by (2m+l)n. wherever it occurs. 

There are six sign changes in the determinant indicated by a circle 

around the sign underneath that for I' = 2mx which must be accounted 

for. 

To obtain the solutions that are antisymmetric in z, we just 

replace Sinh(Ac/2) by Cosh(Ac/2) wherever they appear. The four cases 

that must be investigated separately can be described as follows: 

Case 1: Antisymmetric in y and Symmetric in z 

Case 2: Symmetric in y and Symmetric in z 

Case 3 :  Antisymmetric in y and Antisymmetric in z 

Case 4: Symmetric in y and Antisymmetric in z .  

1.6. Relationship Between Frequency and Wavelength of the Perturbations. 

The dispersion relationship is well known to be 3 = /x = c E/2fi. 
G G 

If we assume, as a first rough approximation, that the group velocity does 
- 

not change with artery cross section and utilize c - 500 cm/sec from 

[l], we obtain In nondimensionalizing the equations we have 

taken 5 as the basic length. Thus the total circumference of the artery 

is 2s(l+c) 

condition of 0.4 cm we have 

Thus for c = 0.5 we take 5 = 0.84 cm, for c = 0.25, 'b = 1.0 cm. Clearly 

the relationship between frequency and wave number is a function of the 

G -  

I = 80 E. 

and assuming a radius of the brachial artery in its natural 

25(l+c) = 2rc(0.4), i.e., s(1i-c) = 1.26 cms. 

parameter c defining the ratio of the sides of the rectangular cross 

section used in the theory, but as an approximate relation we take 6 as 
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- N  unity and hence f = 80 E. This i s  used t o  provide an approximate dimen- 

sional frequency scale on the curves. 
\ 

1.7. Presentation of the Results. 

Before considering the s t r i c t l y  physiological implications l e t  

us note some of the s t a b i l i t y  boundary character is t ics  and the manner i n  

which cer ta in  parameters influence them. 

1.7.1. Perturbations antisymmetric i n  y and symmetric i n  Z .  The s t a b i l i t y  

boundaries f o r  a typical  s e t  of parameters are shown i n  Fig. 2 as  a func- 

t i on  of the quasi s t a t i c  s t r a ins  and deflection, with a negative deflec- 

t i on  being inward. Thus for c = 0.5, w =-0.25 and f o r  c = 0.25, 

w = -.l25 correspond t o  the two f lex ib le  p la tes  being i n  contact with 

each other a t  the midpoints. 

theory i s  applicable f o r  such highly curved configurations we include the 

corresponding r e su l t s  with t h i s  reservation i n  mind. From Fig. 2 it i s  

clear  that the s t a b i l i t y  boundaries change character ra ther  s ign i f icant ly  

as  the a r t e ry  walls are  allowed, by decreasing the cuff pressure o r  increas- 

ing the intraluminal pressure t o  move outwards. This i s  par t icu lar ly  

t rue  f o r  wo 5 -.lo. 
the  s t a b i l i t y  boundaries. For large outward deflections,  the a r t e ry  cross 

section w i l l  become more rounded and the "sides" w i l l  cease t o  be r igid,  

0 

0 

Even though it i s  very doubtful t ha t  plate  

Otherwise, we have only r e l a t i v e l y  small changes i n  

thus violat ing one of our basic assumptions. 

I n  a l l  the data presented here, the change from s t a b i l i t y  t o  

2 i n s t a b i l i t y  occurred very suddenly. Using (T = -lo4 yields s t a b i l i t y  



boundaries t h a t  cannot, t o  within graphical accuracy, be distinguished 

2 from those for  u = 0. The r e su l t s  f o r  a l l  four types of perturbations 

exhibited t h i s  character is t ic .  The f a c t  t ha t  there i s  v i r t u a l l y  no 

change i n  the boundaries f o r  large negative values of u2 tends t o  

corroborate the experimental evidence that the change from stable  ( s i l e n t )  

t o  unstable (audible) conditions i s  quite sudden. 

have expounded i n  considerable d e t a i l  on the mechanism by which the inaudible 

pressure f luctuat ions i n  the  a r t e r i a l  flow are  amplified in to  the audible 

range by the cuff-induced ins tab i l i ty ,  and we r e fe r  the reader t o  tha t  

work. It suff ices  t o  say here tha t  the disturbance is amplified by 

a s  it passes through the unstable a r t e ry  segment, where 'c i s  the l e s se r  

of the i n s t a b i l i t y  duration o r  the time taken f o r  it t o  t r ave l  through the 

cuff. 

Anliker and Raman [l] 

exp1uf-c 

When the two opposite plates  are  not close together, say 

w /c > -0.25 the consistent negative slope of the s t a b i l i t y  boundaries i n  

Fig. 2 i s  in tu i t i ve ly  reasonable. They indicate that f o r  a prescribed 

ax ia l  s t r e t ch  the system i s  s table  when the l a t e r a l  s t r a i n  i s  tens i le ,  or  

i f  compressive, of a su f f i c i en t ly  small value. only when the l a t e r a l  com- 

pressive s t r a i n  exceeds a cer ta in  l i m i t  does the systembecome unstable. 

When the p la tes  have a r e l a t ive ly  large inward def lect ion the s i tua t ion  

is  markedly different ,  as typif ied by the top of Fig. 2 which i l l u s t r a t e s  

the charac te r i s t ic  behavior. 

divides two e n t i r e l y  d i f fe ren t  modes of behavior. 

or high wave nuzber side of t h i s  c r i t i c a l  wavelength, the character of 

the s t a b i l i t y  boundaries can be explained by the argument presented above. 

0 -  

There i s  a "separation" wavelength thak 

On the high frequency 
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However, a t  the frequencies below this c r i t i c a l  one, the behavior is  

somewhat diff'erent. The distinguishing charac te r i s t ic  i s  that i n  th i s  

wavelength regime, f o r  a prescribed axial s t re tch ,  an increase i n  the 

absolute value of the  compressive s t r a i n  stabilizes the system. 

In an attempt t o  explain th i s ,  the w a l l  thickness of the a r t e r y  

was changed by f i f t y  percent and a nmiber of calculations redone The 

value of the separatian frequency and the general character of the s t a b i l i t y  

boundaries remained unchanged as shown i n  Fig. 6. 

cent change i n  f l u i d  densi ty  produced v i r t u a l l y  ident ica l  s tabi l i ty  

boundaries a s  the data presented. These simple attempts t o  i so l a t e  

whether the phenonenon was primarily due t o  s t ruc tu ra l  o r  f l u i d  behavior 

thus f a i l ed  t o  shed any l i g h t  t o  the problem. It should be recal led tha t  

the equilibrium configuration of the p la te  i s  a highly curveii surface f o r  

which the appl icabi l i ty  i s  questionable. 

s t ab i l i t ybomdar i e s  shown i n  Fig. 2 could always be observed f o r  any value 

of m considered. 

Similarly a twenty per- 

The essen t i a l  behavior of the 

As is  t o  be expected, the quasi static s t r a i n s  exercise a dominant 

influence on the frequency range i n  which perturbations are amplified. 

While 

blood pressure measuremnts, this i s  not t rue  f o r  

section undergoes very s ignif icant  changes, and the  lateral s t r a i n  var ies  

markedly along the circumference and wlth t i m e .  

when the physiological implications a re  reviewed. 

E:, the ax ia l  s t r e t c h  of the ar tery,  remains f a i r l y  constant during 

EO since the cross 
Y 

This is  discussed further 

The influence of the transverse wavelength, manifested i n  tHe 

parameter m, is  relatively insignif icant  and the  general result i s  that 



the  character of the boundaries i s  only weakly de 

f o r  m l e s s  than f ive .  No attempt was made t o  obtain data 

values of t h i s  parameter. 

I n  the theore t ica l  model, the ra ther  complex cross section of 

the a r t e ry  has been replaced by a rectangle having one pa i r  of s ides  r ig id  

and the other able t o  def lect .  Theory provides no guide a s  t o  the most 

r e a l i s t i c  r a t i o  of the sides, i.e.,  the  parameter c. It is  clear  from 

the equations t h a t  s t a b i l i t y  boundaries are  independent of c, f o r  w = 0, 

and the differences which do occur f o r  the r e l a t ive ly  small deflections 
0 

are not s ignif icant .  

1.7.2. Case 2. Perturbations symmetric i n  y and symmetric i n  2 .  The 

general pat tern of the s t a b i l i t y  boundaries i s  s imilar  t o  t h a t  of Case 1. 

When the f lex ib le  a r t e r y  w a l l s  are  close together we have again two 

separate regions of i n s t a b i l i t y  which merge in to  one as  w tends t o  zero. 

The influence of the nmber of transverse waves i s  small. 

0 

1.7.3, Case 3 .  Perturbations antisymmetric i n  y and antisymmetric i n  z. 

Perturbations t h a t  are antisymmetric i n  z exhibi t  behavior somewhat d i f -  

fe ren t  from the symmetric, as  can be seen i n  Fig. 3. For c = 0.5 and 

small lateral s t r a in ,  a large range of disturbances i s  being amplified 

even when the two f lex ib le  walls are i n  contact. However, f o r  c = 0.25 

there i s  no "separation" frequency and the theory predicts that unless 

the absolute value of the compressive l a t e r a l  s t r a i n  is much smaller than 

the a x i a l  s t ra in ,  uld ex t o  hear a range of l o w  frequency perturba- 

t i ons  amplified for a l l  posit ions of the a r t e ry  wall. This evidence tends 
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t o  suggest that Korotkoff sounds due t o  t h i s  mode may be audible when the 

opposite w a l l s  of the a r t e ry  are  j u s t  i n  contact a t  the midpoint of the 

f lex ib le  sides.  The w a l l  on e i t h e r  side of t h i s  contact point i s  perfect ly  

f r ee  t o  osc i l la te .  

1.7.4. Case 4. Perturbations symmetric i n  y and antisymmetric i n  z. 

These a re  very similar t o  those of Case 3 and w i l l  not be discussed fur ther .  

1.7.5. Further discussion of the s t a b i l i t y  boundaries. I n  summarizing 

we note tha t  the s t a b i l i t y  boundaries are highly dependent upon the quasi 

s t a t i c  prestress  as would be expected. 

unstable conditions i s  very clear ly  defined i n  t h a t  r~ = 0 and IS = -10 

yield v i r t u a l l y  ident ical  boundaries showing tha t  the system changes 

rapidly from a s table  one t o  a highly unstable one. This supports the 

evidence of a sudden onset of Korotkoff sounds a t  systole.  It must be 

noted that a t  the large ax ia l  s t r a ins  representative of the brachial  a r t e ry  

i n  s i t u ,  the compressive s t r a ins  needed t o  produce the i n s t a b i l i t i e s  are  

an order of magnitude la rger  than those usually considered i n  the analysis 

of metall ic structures.  

The t r ans i t i on  from stable  t o  
2 2 4 

1.8. Discussion of the Results and Their Relationship to the Physiological 

Phenomena Occurring a t  Systole. 

The f lu id-she l l  i n s t a b i l i t y  mechanism postulated by Anliker and 

Raman [l] for Korotkoff sounds a t  diastole ,  is  extended t o  the sys to l ic  

case f o r  which the cross section i s  no longer a c i rc le .  



We 

symmetries 

have discussed 

of the motions 
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the four t 

re la t ive  t o  the 

It i s  pertinent t o  question whether any of these modes are  more l i k e l y  

than the others t o  be the major cause of the Korotkoff sounds. 

attempting t o  answer t h i s  question it eases the discussion if  we ref  

t o  Fig. 7 which i l l u s t r a t e s  the motions involved i n  the four  cases. Since 

the a r t e r y  i s  surrounded by v i r t u a l l y  incompressible f luid-f  i l l e d  t i s sues  

which are  being compressed by the cuff, the resistance t o  the deformations 

of Case 2 a re  considerable since it involves a net change of a r t e r y  cross 

sect ional  area. I n  Case 4 there i s  a movement of the a r t e r y  center of 

gravi ty  i n  the z direct ion which would necessitate some f l u i d  motion 

outside the a r t e ry  f romthe  posit ive z, t o  negative z sides and back, 

during each cycle. This could not occur very e a s i l y  i n  the arm under a 

cuff. On the other hand Cases 1 and 3 do not Lnvolve a change i n  cross 

sect ional  area. 

the t i s sues  o r  cuff and, therefore, a r e  more l i k e l y  t o  par t ic ipa te  i n  

the generation of the Korotkoff sounds. 

be r e s t r i c t ed  i n  what follows t o  the two Cases 1 and 3 whose motions are 

antisymmetric i n  the y coordinate. While bearing i n  mind w h a t  has jus t  

been said about the s tab i l i tyboundar ies  predicted by the theory, l e t  us 

consider what happens as  the cuff pressure i s  raised t o  w e l l  above the 

sys to l i c  pressure sndthen is  gradually released, as during the auscultatory 

blood pressure measurement. 

h i s tory  of the quasi s t a t i c  l a t e r a l  s t r a in .  I n i t i a l l y ,  the cuff pressure 

i s  markedly greater  than the intraluminal pressure and the a r t e r y  i s  

almost completely occluded as  sketched i n  Fig. 8a. 

In 

Th i s  suggests that they are  l e s s  restrained by e i t h e r  

For th i s  reason a t ten t ion  w i l l  

I n  doing t h i s  l e t  us focus a t ten t ion  on the 

Simple s t a t i c s  



analysis shows tha t  the quasi s t a t i c  s t r e s s  i s  compressive i n  the a r t e ry  

walls a t  a l l  points well  removed from the region of very large curvature. 

The magnitude of the compressive stress is  approximately the pressure 

difference. It i s  worth noting t h a t  i n  the theore t ica l  model the concave 

inward w a l l  i s  i n  tension when the cuff pressure exceeds the intraluminal, 

as the f lex ib le  walls a re  simply supported a t  f ixed corners. This must 

be borne i n  mind when interpret ing the resu l t s .  Also, the theory i s  not 

applicable and a l so  we do not expect t o  hear any sounds when large por- 

t ions of the opposite w a l l s  are i n  contact with each other. 

A s  the cuff pressure i s  decreased below the maximum intraluminal 

pressure, as shown i n  Fig. 8b, the i n i t i a l  deflection pat tern w i l l  

in termit tent ly  exhibi t  complete separation of the w a l l s .  In  t h i s  s i tua-  

t ion  simple equilibrium considerations of the membrane indicate that there 

are three contributions t o  the l a t e r a l  s t r e s s  i n  the wall  a t  the point M. 

One i s  simply 

or not. The second occurs only when the walls separate and i s  

where d is  the gap between the walls and h t h e i r  thickness. The 

th i rd  and f o r  our purposes the most important component i s  due t o  the 

curvature of the a r t e ry  w a l l .  If it i s  assumed t h a t  the points L and 

M do not move, the  w a l l  element between them i s  subjected t o  a s t r e s s  

of (p,-pi) R/h  when the radius of' curvature i s  of constant magnitude 

R. Therefore 

(pi - pe) regardless of whether the walls are  i n  contact 

(pi-pe) d/h 

(Pi-Pe) 
E =  Y 0 E ( l + ~  2h - E )  for  wo < o  



and the si@ of t h i s  quasi s t a t i c  s t r a i n  i s  of paramount importance i n  

our analysis.  

large def lect ions and i n  cer ta in  cases the s t a b i l i t y  boundaries have a 

peculiar character when the i n i t i a l  curvature i s  large.  As  of now these 

As  previously s ta ted, the theory becomes questionable for 

pecu l i a r i t i e s  cannot be explained i n  terms of physical considerations. 

A separate investigation i s  needed t o  explain them. However, the r e su l t s  

depicted i n  Fig. 4b for Case 3 are  consis tent ly  i n  agreement with our i n tu i t i on  

even when the i n i t i a l  displacements are  large and we s h a l l  base much of 

the ensuing discussion on these curves. It i s  c lear  t ha t  t o  ,explain 

Korotkoff sounds by the theory presented, large quasi s t a t i c  compressive 

s t r a ins  must occur. 

the cuff pressure i s  i n  the neighborhood of sys to l i c  pressure and l e t  us 

hypothesize how the Korotkoff sounds are being generated. 

Let us consider i n  some d e t a i l  what happens when 

It has been w e l l  established experimentally [2]  t h a t  Korotkoff 

sounds are  not audible u n t i l  the walls have separated a s  shown i n  Fig. D .  

During the time the a r t e ry  is  v i r t u a l l y  occluded the proximal peak pres- 

sure bui lds  up t o  a value somewhat i n  excess of the normal peak pressure 

that would e x i s t  i n  the absence of the cuff. As the a r t e r y  walls separate 

due t o  a lowering of the cuff pressure, a large compressive s t r a i n  i s  pro- 

duced a s  soon as the cuff pressure drops below the intraluminal pressure. 

This large compressive s t r a i n  i s  due t o  the "curvature" of the wall and 

i s  represented by the l a s t  term of (27) .  As the inrushing blood attempts 

t o  distend the ar tery,  the ine r t i a  and e l a s t i c  forces i n  the surrounding 

medium and the cuff inh ib i t  such distension. Thus the points L and N 

in Fig. 8b can be considered a s  essent ia l ly  stationary,  while the f lex ib le  

wall  ac t s  as  anarch.  
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To quantise 

take the s i tua t ion  when the intraluminal pres 

cuff of 5mm Hg, E = 

(27)  yields E =-.lo. Since the ax ia l  s t r e t ch  i n  an a r t e ry  i s  a t  
Y 

0.2, t h i s  is  seen from Fig. kb, t o  be a l i t t l e  too small t o  explain 

Korotkoff sounds a t  systole,  but it i s  off the r igh t  order of magnitude. 

But increasing the pressure difference t o  10 mm Hg or increasing R 

0 

provides a s i tua t ion  where the theory predic t s  amplification of the low 

0 frequency perturbations when = 0.2. 

The large compressive quasi s t a t i c  s t r a i n  s t a t e  postulated need 

e x i s t  f o r  only about a ten th  of a cardiac cycle o r  l e s s  due t o  the high 

amplification fac tor  which i s  of order 

important aspect i s  that  it takes a f i n i t e  time t o  amplify the perturba- 

exp. 30 (see [l]). Another 

t ions  inherent i n  the a r t e r i a l  flow t o  an audible leve l .  If the time 

duration of the prestress  required t o  produce i n s t a b i l i t y  i s  l e s s  than 

that needed t o  amplify the perturbations t o  the audible l eve l  so sounds 

a re  heard. Thus when p < p i  f o r  a su f f i c i en t ly  small time duration, 

the human ear  w i l l  not detect  sounds. 

to ry  sys to l ic  peak will be s l i g h t l y  below the peak intraluminal pressure. 

On the other hand, and as  previously mentioned, while the brachial  a r t e r y  

e 

This suggests that the ausculta- 

d the pressure builds up the sys to l ic  peak proximal t o  the 

cuff t o  a l e v e l  markedly greater than when the cuff i s  removed. 

mental evidence suggests that the l a t t e r  influence i s  the more s igni f icant  

Experi- 

and the ausc r y  technique generally leads t o  an upper bound of the 

i c  pr  
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The hypothesis presented appears t o  support 

evidenced i n  experiments [2] and [ 6 ]  i n  whi 

the quasi s t a t i c  pressure and of the Korotkoff sounds generated i n  a 

physical model of the  brachial  ar tery.  

experimental setup and t racings of representative sounds and pressure 

recordings and shows the microphone sensed f luctuat ions pr ior  t o  the 

human ear .  This seems t o  support the contention t h a t  it takes a f i n i t e  

Figure 8 gives a diagram of the 

time fo r  the perturbations t o  be amplified t o  the audible l e v e l  and the 

microphone responds a t  a lower l eve l  of amplification than the ear.  

Another very in te res t ing  face t  i l l u s t r a t ed  i n  Fig. 8 is  t h a t  the d i s t a l  

(downstream) pressure measurement F exhibi ts  high frequency f luctuat ions 

f o r  cuff pressures above sys to l ic  while t ha t  a t  the proximal end of the 

cuff model a t  C shows them only very s l igh t ly .  T h i s  tends t o  support 

the idea of the cuff acting as  a mechanical amplifier which magnifies 

the per turba t ionsas they  propagate through the segment of the a r t e ry  

affected by the cuff.  

collapse of the a r t e r y  wall, the response would be equally strong a t  

point C as a t  point F. 

If the Korotkoff sounds were due t o  a sudden 

As the cuff pressure is  reduced the duration of the cardiac cycle 

i n  which the intraluminal pressure exceeds that of the cuff' i s  increased 

a s  indicated i n  Fig. 8c. 

sound in t ens i ty  as i s  indeed ob d, c l i n i c a l l y  and experimentally. 

Thus far w e  have r e s t r i c t ed  the discussion t o  t h a t  par t  of the 

Th3.s should lead t o  an increase i n  the Korotkoff 

i s  l e s s  than ntraluminal pressure 

ro  the a r t e r y  becomes wo f. 



34 

approximately e l l i p t i c  i n  cross section and the quasi l a t e r a l  s t r a i n  i n  

the a r t e ry  i s  compressive only during that phase of the cardiac cycle i n  

which the cuff pressure exceeds the intraluminal pressure. Once 

takes on t h i s  shape the theory and in tu i t i on  lead us t o  expect audible 

pressure f luctuat ions only during the downstroke from the sys to l i c  peak 

of the cardiac cycle. Looking a t  Fig. 9, we see t h i s  i s  precisely what 

happens. The i n i t i a l  sounds recorded by the microphone occur j u s t  a t  

the peak of the quasi s t a t i c  pressure a t  

cuff. If we superimposed on the recording of F a sinusoidal wave t o  

I 
F, measured downstream of the 

approximate the quasi s t a t i c  pressure of the cardiac cycle as  it would 

be without the modulation we see t h a t  a s  the cuff pressure is  reduced, 

the Korotkoff sounds are generated progressively fur ther  along the down- 
I 

stroke from the sys to l ic  peak. Explaining the behavior when the cuff 

pressure approaches the average of the cardiac cycle is  beyound the scope 

of t h i s  investigation. 

In  t ry ing  t o  assess the influence of the a r t e r i a l  s t i f fnes s  on 

the sys to l ic  pressure, it appears that a reduction i n  the ax ia l  s t r e t c h  

leads t o  an increase i n  the sys to l ic  pressure measured by the ausculta- 

torytechnique.  To i l l u s t r a t e  t h i s ,  l e t  us assume, a s  a rough approxima- 

t i on  that f o r  a prescribed deflected shape of the f l ex ib l e  w a l l ,  t h a t  

the l a t e r a l  quasi s t a t i c  s t r a i n  i s  d i r ec t ly  re la ted t o  the cuff pressure 

and fo r  i l l u s t r a t i v e  purposes only, focus a t ten t ion  on the curves f o r  

wo = -0.10 i n  Fig. 4b. If we have 

we have no perturbations amplified and we conclude the cuff pressure is  

0 0 
= 0.35 and E = -0.20 or  l e s s ,  

EX Y 

ic .  If instead, we take E' = 0.2, a range of frequencies 
X 

i s  amplified and i f  su f f i c i en t ly  so, we are  lead t o  believe t h a t  the 



cuff pressure i s  below systol ic .  This ced ax 

increased leve ls  of sys to l ic  pressure measured 

technique. 

The influence of thickening of the a r t e r i e s  can be inferred from 

Fig.  6 ,  from which we note that the range of frequencies t h a t  are  amplified 

by the i n s t a b i l i t y  i s  reduced. 

s table  o r  has a smaller region of i n s t a b i l i t y  which r e su l t s  i n  a s l i gh t  

reduction i n  the sys to l ic  pressure. Therefore, the two e f f ec t s  t h a t  can 

occur i n  older persons, namely s t i f fen ing  of the a r t e r y  wall and reduc- 

This means t h a t  a thicker a r t e r y  i s  e i t h e r  

t i on  i n  ax ia l  s t r e t ch  tend t o  have opposite e f f ec t s  on the measurements 

of sys to l ic  pressure by the auscultatory technique. 

method's accuracy i s  maintained regardless of age provided the two influences 

mentioned are  reasonably well balanced. 

This may mean the 

1.9. Conclusions. 

The simple theore t ica l  model of the brachial  a r t e ry  subjected t o  

a cuff pressure, predicts amplification of a range of the iower frequency 

perturbations inherent i n  the a r t e r i a l  blood f l o w .  Several aspects of 

the hypothesis put forward t o  explain the Korotkoff sounds a t  systole 

as  an example of f lu id-she l l  i n s t a b i l i t y  induced by the cuff pressure 

are  in  substant ia l  agreement with available experimental evidence. For 

cuff pressures well above sys to l ic  the a r t e r y  i s  v i r t u a l l y  occluded and 

the theory i s  not applicable. As the cuff pressure drops below the 

intraluminal peak a range of low frequency perturbations is  amplified due 



t o  the i n s t a b i l i t y  caused by large compressive stra As  f 

pressure decreases, the duration of the i n s t a b i l i t y  increas 

t o  more intense Korotkoff sounds. 

It is  shown t h a t  decreasing the axial stretcki of the a r t e r y  

can lead t o  increased sys to l i c  pressures measured by the auscultatory 

technique while increasing the a r t e r y  s t i f fnes s  reduces the high frequency 

content of the i n i t i a l  Korotkoff sounds. 

The pecular behavior of some of the predicted s t a b i l i t y  boundaries 

f o r  cer ta in  mode shapes and the a r t e ry  walls which are  strongly deflected 

by the cuff pressure cannot be s a t i s f a c t o r i l y  explained. While these 

discrepancies occur outside the range of s t r i c t  appl icabi l i ty  of the 

plate  theory u t i l i zed  and only f o r  cer ta in  modes, it i s  not c lear  why 

the s t a b i l i t y  boundaries exhibi t  i n tu i t i ve ly  reasonable behavior f o r  some 

types of perturbations but not f o r  others.  This behavior must be inves t i -  

gated more deeply i n  a separate analysis.  

It i s  considered t h a t  there i s  much evidence t o  support the 

hypothesis that the Korotkoff sounds a t  systole  are  a l so  a manifestation 

of dynamic i n s t a b i l i t y  which amplifies the perturbations above the audible 

level .  
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NOTATION 

c = c/t; 

c = E / & $  
G G O  

2 2 D = h /12(1-~ ) 

I I* 
j’ j& 

K1’ K2 

k = 2a/h  

Width of the rectangular tube model of the 
a r t e r y  

Nondimensional depth of the rectangular tube 

model of the a r t e ry  

Nondimensional group veloci ty  

Nondimensional bending s t i f fnes s  of the a r t e ry  

wall 

Young‘s modulus of the a r t e r y  wall 

Nondimensional s t r e s s  function 

Nondimensional frequency 

Nondimensional a r t e ry  thickness 

Integrals  defined i n  equ. (25) 

Nondimensional s t a t i c  prestresses i n  the 

a r t e ry  

Wave number 

Number of half waves i n  the y direct ion 

Nondimensional s t r e s s  resul tants  i n  the 

a r t e r y  



Le gendre polynomial 

Nondimensional pressure 

Nondimensional transverse force 

Nondimensional t i m e  

Nondimensional blood ve loc i ty  

Nondimensional transverse displacement of 
the a r t e ry  

x,y,z = q, :/5, ; /5 respectively, the nondimens ional coordinates 

2mfi/b f o r  perturbations antisymmetric i n  y 

(2rn+l)fl/b f o r  perturbations symmetric i n  y 

A 

h = X/G Nondimens ional wavelength 

V Poisson’s r a t i o  

-2 -2 - - 
0 p = b 03 p/E Nondimensional density of the a r t e ry  

Nondimensional density of the blood p f 

-2 - @ = ia/b “0 Nondimensional f l u i d  perturbation poten t ia l  

u = “Go Nondimensional c i rcu lar  frequency 

Go = [E/;o C2(1-v > ]  The normalizing frequency 

- 
Denotes a dimensional quantity 
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Fig. la. Sketch of the  Brachial Artery Cross Section a t  Cuff 
Pressures Jus t  Above Systol ic  

- 
1 ', /FLEXIBLE WALL 

WALL  

I- 
Fig. l b .  Model of the Artery Cross Section Used i n  the Analysis 



41 

v) cu 
0 

I 
I t  

so 

m a l -  0 
0 0  0 

o x  
W 

0 
II 

w 
-I 
m 
2 * 

0 

+ 
- 
0 

11 

so 

m c u -  0 
0 0 0  

o x  
W W 

r o w -  0 
0 0  0 

o x  

cu - 

0 

00 

(D 

* 
cu 

0 

0 
(0 
a, 

h 

O 

I 
I 
I 

M 
0 
I 

I1 

O ” h  .-. 
I 
I 
I 
t 
I 
I 

CU 

0 
I 

II 

O> 
-* 



42 

0 

II 

o x  
W 

o x  
W 

o x  
\u 

0 
(u 
M 

cu ~1 0 0 

P cu 



43 

0 - 
0 
I 
II 

9 

In cu 
0 
I 
II 

m c v -  0 
0 0 0  

o x  
W 

0 
II 

ro 

0 cu 
0 

I 
II 

ro 

m c u -  0 
0 0  0 

o x  
W 

0 - 
0 + 
II 

m c u -  0 
0 0 0  

0% 
W 

W - 

cu - 
0 

00-r 

tD 

0 

I I  

E! 
.\ 

cu 

d- 

0 



44 

Lo 
0 

I 
0 

II 

8 

Lo cu - 
0 

I 
I1 

go 

0 
II 

5? 

0 - 
0 
I 
II 

P 

m c u -  0 m c u -  0 
0 0 0  0 0 0  

m c u -  0 
0 0 0  

o x  
\v 

o x  
\u 



45 

0 
II 

v, cu 
0 

I 
I I  

so 

% 
0 

I 
II w 

m c u -  0 m c u -  0 m o l -  0 
0 0 0  0 0 0  0 0  0 

o x  
W 

o x  
W 

o x  
W 



46 

Ln 

I1 

J 

M C U -  0 
0 0 0  

m C U -  0 
0 0 0  

+ 
I 1  

M N -  0 
0 0 0  

o x  
\y 

o x  w o x  w 



47 



48 

0 

I t  

In cu - 
0 

I 

m c u -  0 
0 0 0  

o x  
\y 

m c u -  0 
0 0 0  

o x  
\y 

In 
0 
0 + 
II 

r n  
0 

I 

cu 
0 

0 

II 

B 

3 
h 

a, 

vcu 3 0  



0.3 

EO 0.2 
X 
0. I 

0 

0.3 

0 0.2 

E x  0.1 

0 

0.3 

4 OS2 
0. I 

0 

0.3 

0 0.2 

E x  0.1 

0 

C = 0.50 
49 
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Fig. 6. Influence of Wall Thickness on the Stability Boundaries 

Y 



50 

N 

W 
v) 

0 
a 

N 

0 

I- 
W 

E 
r 

-. - 
W 
v) 

4 

N 

N 

I- 
Z a 
>$ 

0 
z - 

CK c 

.. 
-3- 
W 
0 

0 
a 



51 

Pe 

I 

I 
I 
I 
I 
I 

I I 
I I 

3 
63 
63 
w 
IY 

I 
I 
I 
I 
I 
I 
I 

a 

I 
0 I 

TIME T I  ME 

a 

TI ME 

NO AMPLI FlCATlON 
NO AUDIBLE SOUND 

SUBCRITICAL 
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(a) pe > pi and no amplification; 

(b) p, < pi and insufficient amplification for audibility; 

(c) pe < pi and clearly audible sounds. 

Fig. 8. Relationship Between Cuff Pressure, Intraluminal Pressure, 
Artery Cross Section and the Generation of Korotkoff Sounds 
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CHAPTER I1 

AXISYMMETRIC WAVES IN THICK WALLED CYLINDERS CONTAINING 
AN INVISCID DNCOMPRBSSIBLE FLUID 

2.1. Introduction. 

The study of waves along thin tubes containing various fluids 

allowing for viscosity, compressibility, a non-Newtonian constitutive law 

for the fluid and viscoelastic behavior of the walls has become a subject 

of widespread interest. The literature, much of it devoted to promoting 

a deeper understanding of the flow of blood in arteries, is fairly exten- 

sive and making no pretense of being complete we mention [l] to [ 8 ] ,  as 

being typical. 

they assume the thickness of the arterial wall to be small compared to 

its radius and use thin shell theory based on the Kirchoff-Love hypothesis. 

Apart from the intrinsic interest in relaxing this assumption and repre- 

senting the wall by the equations of the three dimensional theory of elas- 

ticity, this type of analysis has applications in biomechanics. It is 

important to know the effect of thickness on wave speeds. While the 

arteries are known to consist of three layers, it will be assumed that the 

elastic properties and densities are the same in each layer. It may well 

turn out that viscoelastic behavior will have to be allowed for, to yield 

more satisfactory descriptions of these phenomena, but the present analysis 

may serve as a first step in such analyses. Maxwell and Anliker [ k ]  show 

that the type I waves (i.e., involving large radial displacements for all 

but very low frequencies) with which we are primarily concerned, the 

viscoelastic properties of the vessel wall have little effect on the phase 

One thing that all these analyses have in common is that 

53 
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velocity, but a strong influence on the dissipation. However, in experi- 

ments on living animals it is difficult to isolate the dissipative forces 

in the vessel wall from thdse of the surrounding tissue, unless the tissue 

is removed. 

tion, but not attempted to solve the problem of interest to us. 

Klip [9], [lo] Mirsky [Ill have relaxed the thin shell assump- 

2.2. Equations of the Elastic Continuum. 

The lfnear displacement equations of motion for thick orthotropic 

cylinders are well known. 

ducing three assumptions. Firstly, we consider transversely isotropic 

(i.e., cylindrically anistropic) bodies which introduces into Hookes law 

We intend to restrict the analysis by intro- 

‘rx = ‘44 ’rx, ‘re = ‘55  ’re9 

the following simplifications 

‘CXB = ‘66 ’Xe 

‘55 = c44 * 
and 

Secondly, all motions are restricted to being rotationally symmetric and 

having zero circumferential displacement, i .e., v = a/& = 0, and finally 

the analysis is restricted to the case of zero prestresses. Thus the 



55 

equilibrium equations become 

The solut ion of coupled equations of‘ t h i s  type are most conveniently 

accomplished by the introduction of displacement potent ia ls  and following 

Prasad and Jain [I21 w e  introduce t h e  following forms f o r  the  displace- 

ments i n  a body of i n f i n i t e  length, undergoing steady harmonic osc i l la t ions  

propagating along the axis  

w(x,r,t) = e Sin(- - cot) d r  

u(x,r , t)  = u  COS(^ - cot )  . 

In  terms of Q, and U, functions of r only i n  this case, t h e  equations 

of motion are: 

d [CZ1 +Q, + A.p - pu] = 0 

and 

JL T? Q, + C 4 p %  + $U = 0 

( 3 )  

(4)  

where 



To obtain uncoupled equations for Q1 and U w e  take (d/dr + l/r) 

operating on (3) t o  obtain 

4 2 2 CllV Q + \v Q) - pv u = 0 . ( 5 )  

Multiplying ( 5 )  by C44 and (4) by p and adding, we obtain 

Subst i tut ing (6) i n t o  ( 5 )  w e  obtain 

Prasad and Jain [l2] showed haw Bessel Functions can be used t o  solve 

equations of which (7), involving eyen in t eg ra l  powers of t h e  Laplacian 

operator, is  a typ ica l  example. To be complete, w e  give a b r i e f  intro-  

duction of t h e i r  technique. In  cyl indrical  polar coordinates the  equation 

2 = -p Q, 

2 has for p > 0 solutions of the  form 
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Since ( 7 )  is a quadratic i n  the Laplacian operat 

2 2 V @ by -p CP and write t h e  solut ion of (7) as 

and 

where 

and p: a r e  t h e  roots  of 

Since the zero roots  of (7) do not contribute t o  the solut ion they a r e  

not considered fur ther .  
2 Clearly it i s  not necessary tha t  t he  solutions of (10) f o r  p 

be either real or  grea te r  than zero. 

y ie ld  p < 0, the method mentioned above is  va l id  i f  w e  j u s t  replace the  

For t h a t  range of parameters which 
2 

Bessel functions by Modified Bessel functions and the  minus s ign  i n  (10) 

by a plus. For problems t o  be s tudied  here, the  discriminant i s  always 

grea te r  than zero, so w e  need not be concerned wi th  Bessel functions of 
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Solution of the problem necessi ta tes  t h a t  the  boundary conditions 

on the  inner and outer surfaces of the  thick she l l s  be specified.  Before 

doing t h i s  it i s  convenient t o  express the  displacements i n  terms of the 

Bessel Functions, s o  they w i l l  be avai lable  f o r  fu ture  use. 

(8) i n t o  (9) and (2) w e  f ind  f o r  the  displacements w and u the expres- 

sions 

Substi tuting 

i n  which w e  have introduced the following shorthand notation f o r  the eight  
2 functions of r. For p i >  0 

2 For pi < 0 
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only one type of conditio 

of t he  thick shell, namely, s t r e s s  specif 

The f l u i d  pressure m u s t  equal the radial d i r ec t  stress a t  the 

contact surface and a t  stress free boundaries they obviously vanish. 

Hence, CT = 0 and T~~ = 0 a t  r = b. When the inviscid f l u i d  i s  i n  

contact with the inner surface, rtX = 0 and urr = -pf ab/& a t  r = 1. 

Introducing the displacement functions w e  have 

rr 

2 where f o r  pi > 0 

2 and for ,  pi < 0 
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For the shear stress, we find 

2 where, for pi > 0 

i 
R 22 (r) = -C44(Fi + a >  pi K1(Pir) . 

These two relations for the stresses give us the two stress boundary 

conditions which will be used later in the formulation of the frequency 

determinant. 

2.4. Perturbation Pressure Applied by the Fluid to the Shell Inner Surface. 

According to linear potential flow theory, the pressure p at 

the inner surface of the shell is given by 
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where # i s  the velocity potential ,  V t he  flow velocity and 

the f l u i d  density.  

pf i s  

I n  many investigations involving blood flow i n  the cardiovascular 

system the  flow velocity V 

vaj4/ax compared t o  &@/at. 
i s  suf f ic ien t ly  small f o r  us t o  neglect 

To a r r ive  a t  the eigenvalue problem, w e  must express # i n  

terms of the four unknown constants Ai and Bi introduced i n  the  

solut ion f o r  the thick s h e l l  equations. T h i s  i s  accomplished as follows. 

The f l u i d  poten t ia l  function s a t i s f i e s  the continuity equation 

{ +3: aa - a cos(ax - ut)  = 0 . 
2 r S  ar 

Since # 
t h i s  equation i s  

i s  f i n i t e  along the axis of the cylinder, the solution of 

# (x , r , t )  = H I ~ ( W )  cos(ax-cut) 

where I (ar) 

kind. The constant H i s  obtained by sa t i s fy ing  the  kinematic boundary 

condition 

i s  the zero order modified Bessel function of the  first 
0 

which yields  
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Therefore w e  can write f o r  the  velocity potent ia l  

and for the  perturbation pressure 

2.7. Formulation of the  Eigenvalue Problem. 

By enforcing the  stress boundary conditions a t  the  inner and 

outer surfaces of the  s h e l l  w e  obtain a c l a s s i ca l  eigenvalue problem. 

Clearly the  two boundary conditions on the inner surface must  now r e f l e c t  

the vanishing of the  shear stress and the r ad ia l  stress being equal t o  the  

f l u i d  perturbation pressure. Those on t h e  outer surface enforce the  vanish- 

ing of both stress components. Hence the eigenmatrix i s  
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To obtain satisfactory accuracy for the mode shapes it is neces- 

sary to exercise considerable ingenuity in the extraction of the eigen- 

values and eigenvectors from (17) - 
what may be described as "comerically available" Bessel function routines 

and special techniques were used. The Bessel functions Jn(x), Yn(x> 

and In(x) for n = 0, 1 and 2 are computed by the ascending series 

for small x and asymptotic series for large x. The Bessel function 

Kn(x) 

an integral for x > 40. 

The recurrence formula is used for n = 2. The computer subroutines 

are double precision arithmetic for the series summation. The series are 

terminated when the current term does not contribute any information to 

the single precision part of the summation. 

Firstly, it is not adequate to use 

for n = 0 and 1 is computed by ascending series 'for x < 10, 

10 < x < 40 and the asymptotic series for - -  

Secondly, finding the zeros or roots of the determinant was 

accomplished with the aid of the following technique using also double 

precision arithmetic. A special form of two word arithmetic is used 

throughout the root finder. 

is converted to a single precision word which has been scaled to be between 

0.5  and 1.0. The second word is an integer number which represents the 

power of two scale factors. Arithmetic overflow or  underflow is thereby 

eliminated and no Further scaling is required. 

The double precision value of the function 

A lower and upper bound of the range in which the roots are 

sought is supplied as part of the input data. Two initial guesses are 

obtained using the lower bound and 1.1times the lower bound. Linear 
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interpolat ion i s  used t o  compute the  next estimate and it i s  examined 

f o r  convergence. If it satisfies the convergence c r i t e r ion  (xi-xi+l)/xi+l 

< a zero has been computed. If not, t he  estimate F(xi+l) is tebted 

f o r  a sign change. 

procedure i s  repeated using the two latest estimates. 

If the  sign has not changed, t he  l i nea r  interpolat ion 

If t h e  sign has 

changed, a root has been bracketed. O f  the  three available estimates the 

two which maintain the  bracketing and a re  c loses t  t o  the root  are chosen 

for the next l i nea r  interpolat ion.  If convergence i s  not obtained within 

f i v e  iterates, the bracketed region i s  halved and the process repeated. 

Convergence i s  thereby v i r tua l ly  guaranteed. 

If t h e  l i nea r  interpolat ion yields  an estimate outs ide  the bounded 

region it i s  discarded. The bounded region i s  searched at  twenty in te rva ls  

f o r  an estimate which w i l l  be sui table  t o  restart the  l i n e a r  interpolat ion.  

Each zero i s  numerically divided out a t  each i t e r a t ion ,  thereby 

preventing i ts  calculat ion a second t i m e .  A f t e r  the  requested number of 

roots have been computed or  the bounded region searched a t  twenty s teps ,  

the function i s  examined f o r  the  changes i n  sign a t  ten  equal s teps  between 

each root .  A sign change of the  function indicates  one o r  more roots  

remain t o  be computed. 

After the  f i r s t  root  has been found, the next i n i t i a l  estimate 

i s  chosen t o  be .8 times the previous root or  1.5 t i m e s  the  lower bound. 

It i s  desirable  t o  f ind  the  roots i n  ascending order and not t o  m i s s  any 

ps of two or s k i p  

roblem i s  minimized by chosing small 

as 1 

than the  previous root  computed. 



The linear interpolation method theoretically will not converge 

to multiple roots but in practice it is successful due to the inaccuracies 

in each computed root and the truncative computer arithmetic. 

2.7 .  Presentation of the Results. 

The influences of wall thickness and anisotropy are presented 

separately for each of the two types of waves. 

Type I are those whose modes involve large radial displacements at the 

higher frequency, but in the limit of zero frequency the radial displace- 

ment vanishes. 

modes since at the higher frequencies they are associated with strong 

The waves referred to as 

They are also frequently referred to as the "pressure" 

pressure fluctuations. The Type I11 waves involve predominantly axial 

displacements at all but the lowest frequencies and are not significantly 

affected by the presence of an inviscid fluid. 

2.7.1. 

of frequency i s  shown in Figure 1. The results of this analysis and those 

Type I waves for isotropic walls. The phase velocity as a function 

based on thin shell (Kirchoff-Love hypothesis) theory for the Type I phase 

velocity are rather similar at least for 

yielding a slightly lower velocity. 

at w 2 0.6, and a very similar effect of thickness that is virtually 

h/a - < 0.2, with the latter 

Both theories show a minimum velocity 

independent of frequency. 

fbllows very closely the classic Moens-Korteweg relationship, insofar as 

The variation of phase velocity with thickness 

it increases like the square root Qf the ratio of wall thickness to mean 

radius. 
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The mode shape predictions, as a function of frequency, based 

on thin shell theory are also quite well substantiated by the theory of 

elasticity analysis given here. 

plotted in Figure 2 for two values of the nondimensional frequency. 

Since the spatial distribution of displacement cannot be defined in terms 

of the values at the mean radius, the comparison with thin shell theory 

is not completely straight-forward. For LU = 0.1, thin shell theory [4] 

predicts that the m o d a l  amplitudes of the axial and radial displacements 

at the middle surface will be almost the same. This is corroborated by 

the elasticity solution shown in Figure 2a. We note that the modal ampli- 

tudes do not change significantly with thickness or as we traverse the 

wall of prescribed thickness. The thin shell analysis predicts for 

(1) = 0.5 a radial displacement of the middle surface which is approximately 

eight times the axial displacement, for 

solution, this factor is about ten. However, at this frequency both the 

effect of wall thickness and the variation of modal amplitude as a function 

of the radius are much more pronounced. 

at this higher frequency the axial displacement is considerably less at 

the outer and hence visible surface than it is at the inner surface where 

it is in contact with the fluid. The thinner the wall, the less is the 

motion visible from the outside. 

As examples, the mode shapes have bee 

h/a = 0.1. For the elasticity 

In particular, it is clear that 

2.7.2. . The elasticity solutions for 

these waves shows that the thin shell theory underestimates the phase 

velocity by about eight percent for all frequencies when the wall thickness 



to mean radius ratio is 0.1. 

become slightly dispersive with a phase velocity that decreases with 

increasing frequency while thin shell theory predicts a very small increase 

in the phase velocity as the wall is thickened at least for h/a 

than 0.2. 

that radial displacements are very small in campayison with the axial 

displacements. We nde that, as in contrast to Type I waves, the maximum 

radial displacements are at the outer surface. 

displacements confirms the experimental observation [l3] that axial waves 

are associated with extremely small pressure perturbations. 

As we raise the wall thickness the weves 

less 

The modal amplitudes are shown in Figure 3 which confirms 

The smallness of the radial 

2 . 7 . 3 .  Material properties of transversely isotropic vessel walls. The 

restriction of the wall equation of state to transverse isotropy means 

that it is possible to select five elastic parameters. This was done by 

choosing the three elastic moduli, the shear modulus and one Poisson's 

ratio and utilizing the equations of [14]. To keep the Poisson's ratios 

no greater than 0.7 it is necessary to restrict the radial modulus to be 

reasonably close to the circumferential value. 

restricted to being the sane. 

FF'or convenience they were 

Of the resulting elastic constants, Cll which exercises a 

dominant influence on the Ty-pe I waves, is approximately equal to 1.4 

times the m d u l u s  ratio. On the other hand, C and C44 which have 

a marked effect on the axial waves, v a r y  much less as a function of the 

modulus ratio and in fact the former decreases when this ratio increases. 

33 
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The constant 

variation of 

to 0.2 produced a virtually negligible change in theresults. 

C4& 

C4 

can be specified independently of the others and a 

from 0.33 (the value for an isotropic wall with v = 0.3) 

2.7.4. Type I3ic&ves for transversely isotropic vessel walls. The signif- 

icant influence of this particular type of' orthotropic material on the 

phase velocity of Type I waves is shown in Figure 4, for the case of a 

relatiyely thin wall with The low frequency regime is the h/a = 0.1. 

one of primary physiological importance and at zerO frequency, the phase 

velocity is proportional to (Ee/Ex)1'2. The reason far this is the large 

change in Cll mentioned previously. The marked change in the modal dis- 

placements is illustrated in Figure 3 .  The axial displacement for the 

low frequency situation (u, = 0.1) and the radfal for the high frequency 

case (a = 0.5) are hardly affected but for each frequency the smaller of 

the two displacements is heavily dependent upon the ratio of the moduli. 

A s  the modulus ratio increases, the radial displacement amplitude decreases 

for the low frequency case. 

ratio could be utilized to assess the degree of anisotropy. 

This sensitivity of the mode shape to modulus 

2.7.5. Type I11 waves in transversely isotropic vessel walls. 

The small reduction in phaEe velocity of the Type I11 waves, 

as the modulus ratio increases is to be expected from the small reduction 

that has been discussed previously. 
in c33 



2.8. Caparison of the Theory with Experimental D a t a .  

Recently obtained experimental results, such as those by Moritz 

[13] on the  wave speeds i n  the corotid arteries of anesthetized dogs is 

reproduced here as Figure 6.  The first prerequisite,  before a comparison 

canbemade between theory and experiment i s  t o  reduce h i s  results t o  

nondimensional form. This i s  considerably f a c i l i t a t e d  because the  Type I11 

waves are so  insensi-f;ive t o  the  modu l i .  The square of t he  nondimensional 

wave speed is  given as 

2 - 2 - -  
c = c  P/Ex * 

Moritz has measured c f o r  Type I11 waves as about 30 meters/sec, 6 i s  

5 close t o  1.0, g/cm , c 

9 X 10 dynes/cm2 far Ex. Taking Mor i tz ' s  value of 0.223 c m  f o r  a and 

using the  def in i t ion  of Go, w e  obtain CD = G/l.3 X 10 . 
the  reduction of Moritz's da ta  t o  nundimensional form and the  scales 

have been added t o  Figure 6. 

can be taken as unity and (18) yields a value of 
6 

4 Th i s  completes 

We note t h a t  a frequency of TOO Hz corresponds t o  an extremely 

small nondimensional frequency and w e  are able t o  use the zero frequency 

phase ve loc i t ies  for comparison with the experimental resul ts .  The non- 

dimensional phase veloci.ty f o r  the pressure waves, from MoTitz's experi- 

m e n t s  i s  approximately 0.4. 

Ee/Ex = (0.4/0.225) = 3.16. 

dogs are s igni f icant ly  anisotropic and w e  would expect t o  f ind  the  circum- 

ferent ia lmadulus about three times the axial modulus. However, it must 

Hence, t he  r a t i o  of the elastic moduli i s  

This suggests that the  carot id  a r t e r y  of 2 
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be remembered that the curves presented are limited to transverse isotropy 

with equal radial and circumferential moduli. 

mental evidence is available on the radial modulus and it would be very 

To our knowledgSe no experi- 

difficult to obtain 

2.9. Conclusions. 

Using the equations of elasticity for an unprestressed, transversely 

isotropic circular cylinder to represent the walls of' blood vessels, we 

have shown the importance of both wall thickness and anisotropy. 

axial waves are but little influenced by either wall thickness or anisotropy 

The 

of the types considered. 

significantly affected by both. 

this phase velocity by approximately the ratio of 

expected on the basis of the classic Meons-Korteweg equation. 

However, the pressure or ''Type I" waves are 

Increasing the wall thickness raises 

(h/a) as could be 

For a mean 

radius to wall thickness ratio of ten, the phase velocity predicted by 

the thin shell analysis 1s about ten percent less than that corresponding 

to the elasticity solution. The influence of w a l l  thickness on mode shape 

agrees at least qualitatively with the thin shell approximation. 

Increasing the circumferential and radial elastic moduli, relative 

to the axial, prduces very little change in the phase velocity of axial 

waves. Forthe pressure waves the phase velocity is approximately propor- 

tional to the square root of the ratio of the circumferential to axial 

moduli. The mode shepes are also mkedly affected by the wall properties. 



A comparison of the theory with recent experimental results for 

the speed of axial and pressure waves in corotid arteries of anesthetized 

dogs suggests that the carotid wall is transversely isotropic with a 

circumferential moduls three times the axial. 



NOTATION 

- 
a 

Arbitrary constants in the solution of the equations 
of motion 

Inner radius of the shell and normalizing geometric 
dimens i on 

a Nondimensional mean radius of the shell 

Arbitrary constants in the solution of the equations 
of motion 

Bi 

b = 61; Nondimensional outer radius of the thick shell 

= 2 ./E Nondimensional elastic constants of the thick shell 'ij ij x 

c = ;/[E/;] 112 Nondimensional phase velocity 

- 
Normalizing (axial) Young's Modulus 

EX 

Circumferential Young's modulus 

Ii,Ji,Ki,Yi Bessel functions of integer order 

m =  Pf Io(a)la I$) 

Roots of equation (6a) pi 

P, $Ex Nondimensional fluid pressure on shell inner surface 

Nondimensional radial coordinate 
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t, w 5 
0 

U 

u, ;/. 

w, w/a 

x, 2/; 

a ,  2fi/A 

ri 
jk 

'ij 

A =  1 

A2 = 

M =  

V 

-2-2- 
Pf 7 a "oPf/Ex 

Nondimensional time 

Displacement potential introduced in equation (2) 

Nondimensional fluid velocity 

Nondimens i ona 1 axial displacement 

Nondimensional radial displacement 

Nondimensional axial coordinate 

Nondimensional wave number 

Functions introduced in equation (7) 

Shear strain 

Direct strain 

Nond imens ional wave length 

2 3 
(w - c44 a-) 

2 (w  - C T 3  4, 

Poisson's ratio 

Nondimensional density.of the shell wall 

Nondimensional fluid density 
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Nondimensional axial stress 

Displacement potential function introduced in 

equation (2) 

6 Fluid potential function introduced in equation (9) 

- 
T, -c/3 Nondimensional shear stress 

w = ;I/;; Nondimensional frequency 

io, P,/Pa --2 1 

0 

Normalizing frequency 

Denotes a dimensional quantity 
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CHAPTER 111 

3.1.  Introduction. 

A review of the l i t e r a t u r e  on the  flow of blood i n  arteries and 

veins as w e l l  as t h a t  devoted t o  wave propagation i n  th in  shells, suggests 

t ha t  an overwhelming majority of investigations have focused on blood 

vessels w i t h  a c i r cu la r  cross section. In  f ac t ,  w e  are not aware of any 

numerical computation of the wave speeds i n  a prestressed shell of e l l i p t i c  

cross section, other than t h a t  by Kresch [l] who used e l ec t r i c  c i r c u i t  

analogies to show that the cross section shape exercises a very small 

influence on the phase velocity of the pressure waves. 

here is t h a t  of engineering mechanics and follows qui te  closely the work 

of Anliker and MEaxwell [ 2 ] .  

The approach taken 

One s igni f icant  complication of a blood vessel whose cross section 

i s  noncircular is tha t ,  i n  general, the  quasi s t a t i c  transmural pressure 

distorts the  cross section t o  a d i f fe ren t  shape and induces bending s t resses .  

In  t h i s  investigation w e  r e s t r i c t  the transmural pressure t o  be that which 

produces a membrane prestress  state. It i s  a l so  assumed that the consti- 

t u t ive  equation f o r  the vessel w a l l  is  that of an isotropic  and l i nea r ly  

e l a s t i c  body. 

range of the stress, s t r a i n  curve, t h i s  is a tenable assumption. 

Since w e  are only concerned wi th  l oca l  behavior over a small 

The purpose 

of the investigation i s  t o  check whether deviations from a c i rcu lar  cross 

section can account Tor  a de f in i t e  pattern i n  the  transmission of presswe 

waves i n  blood vessels. 

83 
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3.2. Fluid Motion and i t s  Relationship t o  the  Shel l  Motion. 

For an incompressible, inviscid f l d d  flowing i r ro t a t iona l ly  

i n  an e l l i p t i c  cylinder as shown i n  Figure 1, the equation of continuity 

i n  terms of the velocity potent ia l  function @ is, 

where 9 
coordinates ( 5 ,  7) 

ates y and z by 

is the  two dimensional Laplacian operator i n  the e l l i p t i c  

which are related (see [ 3 ] )  t o  the Cartesian coordin- 

y = e Sinh 5 Sin ‘1 and z = e Cosh 5 Cos 7 . ( 2  1 

In  the limit, as the eccent r ic i ty  tends t o  zero and the  e l l i p s e  becomes 

a c i r c l e ,  5 and ‘1 reduce ta  t h e  cyl indrical  polar coordinates. A l l  the 

geometric variables are nondimensionalized by dividing by the semi-majm 

axis  length. 

Considering wave propagation along the axis of the cylinder, 

w e  amm.ne that the velocity potent ia l  function kas the  form 

Substi tution of‘ ( 3 )  i n t o  (1) yie lds  the  equation f o r  $ as 

$$ - k2$ = 0 



Writing (4) i n  the e l l i p t i c  coordinates w e  f ind  (p.  173 of [ 3 ] )  

2 2  i n  which q = k e /4. 

If w e  now separate variables by assuming $(S,v) = X(5) O ( 7 )  

and introduce t h i s  i n t o  ( 5 )  w e  f ind 

a'o 
av2 
- + (a + 2q COS 27)0 = o 

h 

These a re  respectively the  w e l l  known Mathieu and Modified Mathieu equations. 

In  our case, q i s  negative. It i s  c lear  t h a t  w e  are concerned with only 

periodic solutions i n  q j  t h e  nonperiodic solution being untenable on 

physical grounds f o r  a complete e l l i p t i c  she l l .  W e  assume t h a t  the T l u i d  

perturbations s a t i s f y  (6) and study the phase velocity f o r  each per turba-  

t ion  of i n t e re s t .  

The relationship between the f l u i d  velocity normal t o  the she l l  

surface and the  s h e l l  veloci ty  i n  t h i s  direct ion i s  prescribed by t h e  

kinematic boundary condition which i s  somewhat more involved than f o r  a 

c i rcu lar  cross section. 

The kinematic boundary condition i s  (see eg. [h]) 
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In  regions where the s h e l l  curvature does not change too d ras t i ca l ly  w e  

can replace aR/an by unity and &/&.I by a@/&, but  w e  s h a l l  r e t a in  

( 7 )  ' 

The f l u i d  perturbation can have any required symmetry about the  

major axes of the e l l i p se  provided w e  choose appropriate Mathieu and 

Modified Mathieu functions. 

ourselves t o  the  case of a perturbation symmetric about both axes and by 

using (6) and (3) w e  have 

To c l a r i f y  the  technique w e  sha l l  r e s t r i c t  

where H i s  an a rb i t r a ry  constant, t o  be determined. To obtain other 

types of symmetries we j u s t  replace Ce2m(S, -q) by Ce,,(C,-q) o r  

(E -9) and so  for th .  e2m+1 

If w e  u t i l i z e  e l l i p t i c  coordinates i n  (7) w e  can write 

where, according t o  [ 3 ]  

Cosh 2E0 + Cos 27 1/2 

R = e [  1 
and 

Cosh 25, - COS 2711/2 
B = e [  



We note that the Lam6 

equals R only when 
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coefficient 3, of the first f 

cross section is reasonably close to being circular. 

Substituting (8) into (9) and assuming for the transverse dis- 

placement of the shell an expression of the form 

w(q,x,t) = C ce2m(q,-q) Sin(ot-kx) 

we obtain 

= - (0-kU) C ce2m(7,-q) (11) 

where 

the pathological case of the ellipse degenerating into the interfocal 

line. 

tends to a Modified Bessel function,-while the Mathieu function tends 

to a Cosine and the two arbitrary constants H and C can be immediately 

determined. In the general situation the problem is more complex and we 

choose to solve (11) by a Galerkin procedure in that we multiply both 

sides of the equation by ce2m(ql-q) and integrate from 0 to 2 ~ .  In 

doing this, the degree to which the binomial expansions in @ are carried 

out is important. 

6 = Cos 2q/@ is less than unity for elliptic cylinder except in 

As the ellipse tends to a circle, the Modified Mathieu function 

Since f3 = (2/e2-l), the larger the eccentricity, the 



88. 

more terms are needed in the ewansion to achieve a desired accuracy. 

We shall restrict ourselves to relatively small eccentricit 

first power of‘ 8 in the binomial expansion. In other words we retain 

f3-1 

$ = 49 for e = 0.2 and f3 21 for e = 0.3 so the influence of 

compared to unity but neglect all higher order terms. We note that 

ellipticity can be 

From (11) 

+T sinh 25, 

detected by the analysis. 

we obtain 

2Tt 

This ensures the normal fluid and shell wall velocities are equal, in 

the Galerkin sense and we are in a position to consider the fluid pres- 

sure exerted on the elastic shell. Introducing the shorthand M and 

N for the integrals on the left and right sides, respectively of (12), 

we have 

0 Cosh 25 
Sinh 2E0 

1 

Ce2m(S’-q) dS I 5=5,  

* c  

For linearized potential flow, the pressure is given by 
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1/2 Cosh 2k0 Cea(E,-q) 
2 N e p  - = pf("-ku) M 7 Sinh 2t0 * d Ce2,(5,-q) ce (7 -9) Sin(at-kx) . 2m 1 

For negative values of q the Modified or Radial Mathieu functions are 

expressible in terms of Modified Bessel functions (see eg. [ 3 ]  p. 165) as 

d Ce2,(S,-CI) a3 

= (-l)m ce2m(0,q) 2(q)'l2 Sinh 5 (-l)r A2P I;r(~) 
r = O  d5 

in which y 5 21q11'2 Cosh 5 and where I* ( - )  denotes derivatives with 

respect to the argument. Putting n = 0 in the above expression we obtain 

2r 

ry 

where 7 = '21q11/2 Cosh 5,. 



3.3. 

U 

[Lij]  v 

W 

Shel l  Theory. 

ii 0 

+ p ti - 0 = 0 

ti P 

Since the prestress  due t o  axial s t r e t ch  and the  quasi s t a t i c  

pressure difference across the s h e l l  w a l l  are known t o  be s igni f icant  i n  

wave propagation problems it is essential t o  u t i l i z e  s h e l l  theory t h a t  
I 

contains such t e r m s .  This subject i s  reviewed i n  Chapter IV where it 

i s  shown t h a t  u t i l i z i n g  Washizu's [ 5 ]  theory w e  can write the  following 

equation of motion 

where 

( l + v )  a2 L12 = L21 = 2B a 

a2 R a2 + -  - (-) ( 2 ( 1 - v )  - 2 R  
h2 

&x2 B2 aq 

2N0 h2 1 33 (2-v) a3 l a  ' a +- {-- +-- 
12R2 B3 h3 ax2% L23 = - (E) - 3 



In  the general case a l l  t h a t  remains i s  t o  assume sui tab le  

functions similar t o  (10) f o r  the axial and circumferential  displacements, 

subs t i tu te  them i n t o  (13) u t i l i z e  Galerkins method and after a consider- 

able nmber of algebraic manipulations, the analysis  is  reduced t o  t ha t  

of a classic eigenvalue problem. 

vide the numerical &&%a f a r  the case of grea tes t  physiolugical s ign i f i -  

cance w e  shall consider the lowest doubly symmetric mode,namely tha t  which 

degenerates i n t o  ro ta t iona l ly  symmetric case f o r  the c i r cu la r  she l l .  This 

is accomplished by putting the  subscript  equal t o  zezo i n  a l l  the  equations. 

To i l l u s t r a t e  t he  technique and pro- 

While t h i s  method of using the Mathieu functions reduces the solu- 

t i on  t o  a t h i r d  order eigenvalue problem, the algebra involved is  tedious 

and w e  s h a l l  a m i t  it. W e  assume f o r  t h e  displacements, the form 

and similar expressions for the other two d i sp lacmmts .  Since w e  are 

concerned only w i t h  small values of 

a t  the  t h i r d  t e r m  of the expansion. 

q, w e  truncate the Mathieu functions 

Thus w e  have, from [3], for example 



0 2 
where A. = 1, A; = (q/2) (1- ,7q ./56), A t  = (q2/32) (1 - h 2 / 1 6 3 )  

influence of terms of 

negligible.  

Substi tuting 

Galerkins method,  w e  

Lyl = ( l + N i )  k 2 I t 

I 

higher order than q4 on the eigen solutions 

me 

was 

(15) i n t o  (14) and then i n t o  (13) and using 

Dbtain the terms i n  the eigenmatrix as 
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3.4.  Discussion of the Results. 

The eigenvalue problem was solved by using a d i g i t a l  routine 

capable of handling nonsymmetric matrices and by defining a l l  t h e  para- 

meters except a2, which i s  the eigenvalue. It i s  noted t h a t  the elements 

of the matrix are nonsymmetric only w i t h  respect t o  terms tha t  a r e  of 

order p . Clearly these t e r m s  are of questionable accuracy and when -1 

deleted the change i n  the eigenvalues was en t i r e ly  negligible.  

a l s o  self evident t h a t  the approximations introduced preclude t h e  use of 

t h i s  work for very large eccent r ic i t ies .  

t e r m  solution of (15) was made by taking 

adequate accuracy was achieved f o r  eccent r ic i t ies  up t o  0.5 b u t  f o r  higher 

It i s  

A check of a l l  cases with a two 

A4 = 0. 0 It was found t h a t  



values the results are suspect. Noting the interdependence of f3 and 

e, this is not at all surprising. 

On reviewing the equations, it takes little effort to show that 

the theory does indeed converge to the results for a circular cross 

section as the eccentricity tends to zero. This is amply demonstrated 

by the results in Table 1. In this table we see a very small effect of 

eccentricity on the phase velocities for all three types of waves. The 

circumferential prestress due to uniform internal pressure in a cylinder 

of noncircular cross section is not a simple problem in membrane theory. 

Therefore this preliminary study of the effects of ellipticity of the 

cross section on the wave transmission characteristics was restricted to 

zero circumferential prestress. In Chapter TV, it is shown that the dis- 

placements and rotations of the circumferential prestress resultants must 

be accounted for to obtain physically meaningful results. 

3.5. Conclusion. 

The influence of eccentricity 3n the phase velocities of perturba- 

tions represented by the zeroth order Mathieu functions are, for eccentri- 

cities less than 0.5,  very small. 
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NOTATION 

a 
a 
- 

2m 2m 
'2r~ B2r 

e 

- -  
h = h/a 

k 

Characteristic number of the Mathieu Function' 
Semi major axis of the ellipse and normalizing 
geometric dimension 

Coefficients of the Mathieu and Modified (Radial) 
Mathieu Functions 

Lame/ parameters af the shell aidsurface 

Modified (radial) Mathieu Function of order 
with negative q 

2m, 

Mathieu Function of order 2m with negative q 

Young's modulus 

Eccentricity of the ellipse 

Nondimensional shell thickness 

Differential operators of the displacement equilibrium 
equations 

Nondimensional wave number 

Integrals defined in (12) 

Nondimensional prestress resultants 

Coordinate normal to the shell midsurface 

Mondimensional pressure 
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9 =  k2e2/4 

R Nondimensional radial coordinate 

Nondimensional time 

U Nondimensional fluid velocity 

u, v, w Nondimensional shell midsurface displacements 

x, Y, z Cartesian coordinates 

B =  (2/e2- 1) 

Y =  21q11/2 cosh 5 

Y Poissons ratio 

E, ll Elliptic coordinates 

Nondimensional shell wall density, which is unity 
because of the choice of normalizing constants 

Nondimensional f l u i d  density Pf 

- -  
0 

CI = o/a Nondimens ional frequency 

BondomensioAl fluid potential function 

Bar over a symbol denotes a dimensional quantity 
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CHAPlXR Iv 

APPLICATION OF VARIOUS SHEJLL THXORIES TO BLOC@ FLOW PR03LEMS 

4.1. Introduction. 

In many situations involving the Zlow of blmod within the 

vascular system, as in the case of primary arteries, it is essential to 

account for the significant prestressed state, about which the pulsations 

take place. In addition to this, it is clearly established that the 

constitutive law of any tissue is very complex and there is evidence, 

e.g., [l], [2] that arteries and veins, over their full range, including 

the excised state, exhibit some of the characteristics of locking solids 

[ 3 ] .  

with the behavior of the vessel in a small neighborhood of a quasi-static 

prestressed state. For such cases the perturbation strains of interest 

are small and it is reasonable, at least as a first approximtion,to treat 

the vessel wall material as perfectly elastic and consider the prestressed 

state as given. Once this is done the equations of elastic shell theory 

become applicable to blood vessels and we shall now discuss certain facets 

of this theory, as it applies to cylinders, in particular those of circular 

cross section. 

However for a number of investigations we are primarily concerned 

In reviewing the well known literature, e.g., [4]  to [13] of this 

type of problem it is immediately obvious, as in many other fields of shell 

analysis, that the equations used by the various authors do not agree in 

all respects. Another subject of considerable interest is to note that 
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[Lijl 

unlike metal structures, the strains induced by the prestress in the 

primary arteries are not negligible compared to unity. 

showed in 1938 [14] and reviewed in his book [15] the fact that the stress- 

strain law for the incremental deformations, relative to the prestress 

state is, in rectangular Cartesian coordinates, non-symmetric, for pre- 

stress states which are not hydrostatic. 

by Pf'lker [16]. 

elastic shell equations for linearized perturbations about a given pre- 

stressed state, in an attempt to illustrate some of the questions raised. 

Since many ofthe points we wish to make can be illustrated using cylinders 

of circular cross section we shall take advantage of the algebraic siaplicity 

of havlng the second Lam4 coefficient equal to the constant radius of the 

shell, in certain investigations while retaining general cross sections in 

others. 

Furthermore Blot 

The same conclusion is reached 

Therefore it is desirable to review the cylindrical 

U X 
Y f Y = 0 

4.2. Bolotins Dynamic Stability Equations for a Circular Cylinder. 

Since the dynamic stability of shells has been a research topic 

of considerable interest over the past decade and is likely to remain so 

for many years, it is tempting to utilize the equations presented in a 

well known text. As an example there is [ 7 ] ,  in which Bolotin considers 

the dynamic stability of circular cylinders and gives the differential 

equations describing small perturbations about a prestressed state: 
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i n  which, after correcting some typographical e r rors  i n  [7] 

a2 a2 Lll = - +-- 
ax2 2R2 ab* 

- 1 -.- a2 + ( 1 - v )  __ a* - 
L22 R2 &62 ax2 

and X, Y and Z are the  applied midsurface loads per unit  area. One 

of' t he  most in te res t ing  aspects of these operators is  t h a t  L is  not 13 
the  adjoint  of L except when = Ni i n  which case the only "prestress 31 X 

33 ' t e r m "  appears i n  operator L 

Reviewing Bolotin's derivation w e  see tha t  it i s  based on the 

determination of cer ta in  "reduced (membrane) loads" . These are obtained 

by writ ing the  l i nea r  membrane equations i n  t e r m s  of the Lam6 coefficients 

and then replacing these by t h e i r  values i n  the deformed state, t o  obtain 

a set of geometrically non-linear ( large displacement) membrane equations. 
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This  technique does not produce the same large displacement membrane 

equations as those described by other authors. 

exhibit non-self adjointness i n  one of the operator pa i r s  even though 

Also, Bolotin 's  equations 

h i s  theory is  based on the assumption of small s t ra ins .  It i s  w e l l  known 

t h a t  a l l  l i nea r  d i f f e ren t i a l  equations derivable from a var ia t ional  principle 

must be self adjoint.  Hence h i s  equations f o r  the  incremental reduced 

loads should be scrutinized. The basic idea of using the large deflection 

membrane equations t o  obtain the membrane prestress t e r m s  is  valid, but  

obtaining these equations by replacing i n  the  l i nea r  equations 

A ( l  + all) and B by B(l + J22) i s  not sa t i s fac tory  as w e  shall now 

demonstrate. 

A by 

If w e  r e s t r i c t  ourselves t o  No = 0 f o r  t h i s  purpose, Washizu's 

-1 membrane equations [12] f o r  cylinders wi th  A = 1 and Ra = 0, we can 

write 

where the a are the l i nea r  s t r a ins  and rotat ions,  namely 
i j  

jl1 = au/&; a12 = (i/~) aula@; ael = a v / h  

,422 = av/ap - W/R@; a31 = up = aw/& 

j32 = ma = v/Rp + ( l /B)  &/&. 
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var ia t iona l  equations) i s  t o  express each dependent variab 

of the  value corresponding t o  the  zeroth (basic membrane) s t a t e  plus a 

perturbation. 

i n  the zeroth state and r e t a in  only those 

power i n  the perturbation quant i t ies .  

delet ing anything s ignif icant  f o r  our demonstration, let  us r e s t r i c t  our- 

selves t o  cylinders i n  which B = R No = 0 and t h e  membrane prestress 

resul tants ,  

Then w e  make use of t h e  f a c t  tha t  the s h e l l  i n  equilibrium 

terms that are of the first 

To simplify the algebra without 

B' aB 
and No are constants. Then w e  have B 

These equations a r e  self adjoint  i n  contrast  t o  those given by Bolotin. 

While t h i s  review of Bolotin's equations may be of in te res t ,  

it does not help explain the differences i n  the equations proposed by 

other authors. Many ha principles of v i r t u a l  work or minimum 

potent ia l  energy, but  the r e su l t s  depend on the strain displacement rela- 

t ions u t i l i zed .  For l i cab le  p r imar i ly  t o  m e t a l  shells, the 

neglection of lving the inplane displacements i n  
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these relations has been proven permissible. However we shall retain 

these terms to study their effects in the case of blood vessels and pre- 

sent Washizu's [12] theory for a cylinder of general cross section. 

4.3. Equations for Cylindrical Shells Under Initial Stress when the 

Strains are Negligible ampared to Unity. 

Let us now restrict our attention to those sets of equations in 

which the strains are considered negligible compared to unity, while 

retaining all terms involving the prestress resultants, but relax the 

assumption that the cross section is circular. Once this particular 

small strain assumption is invoked, Washizu's equations [12] can be 

utilized directly and the matrix of differential operators for a membrane 

prestress state in which the axial and circumferential stress are constant 

and the inplane shear stress is zero, become 

( l + v )  a2 - - 
L12 - L21 - 2B 

v a  L31 = - Lr4 - - -  - 
RB a2 
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As we wwld expeart, the prestress  terms are the same as those 

and L d i f f e r  by m o r e  than the  sign, b u t  L23 32 i n  ( 3 ) .  The operators 

reca l l ing  the def in i t ion  of a self adjoint  d i f f e r e n t i a l  operator it can 

be shown t h a t  they are the adjoints  of each other.  For two dimensional 

systems, the adjoint  operator of a{a(a,@) u(a,p))/&:, where a(a,f3) i s  

a coeff ic ient  of the independent variables onlyyis  by def in i t ion  

(-1) a(a,#3) a u ( a , B ) / b  and s imilar ly  f o r  higher order derivatives.  W e  

note t h a t  since a l l  cylinders are developable surfaces it is always possible 

t o  choose coordinates such that both Lame/ parameters are unity, i.e. , w e  

can replace Bdp by ds wherever conyenient. This is  par t icu lar ly  advan- 

tageous when demonstrating that the operators are self adjoint.  For a 

c i r cu la r  cross section, the operators of (4) can be eas i ly  simplified by 

putting a = X, p = 6 and R = B = R. B 
The prestress  terms i n  these operatars are then precisely those 

obtained by Armenakas  arid Herrmann El?]. 

variat ional  method when the  nonlinear in-plane displacement terms a re  

retained i n  the strain-displacement relations and the  strains are considered 

They can a l s o  be derived by a 
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to be small. 

hydrostatic pressure, [l7] shows that certain prestress terms are cancelled 

by force components that arise from the rotation af the applied pressure. 

This fact is particularly important as we shall demonstrate later, but is 

usually not mentioned in the literature. 

However, when the circumferential prestress is due to 

It is of interest to note thatFl8ggefsequations, as used by 

Anliker and Maxwell [IS] are identical with those of Hemmann and A m -  

[13] and the succeeding papers based on this work3 if the same assumption 

is made concerning the application of the prestresses. In [18] the authors 

consider that after the axial prestress is applied, axial expansion of 

the cylinder is prevented while the cylinder pressurized. 
0 0 axial prestress resultant of Nx + v N p  rather than Ng if the shell 

is not restrained. We allow the vessel t o  be unrestrained. In our nota- 

tion the corresponding self adjoint operators for the theories based on 

[4] and [13] are 

This yields an 

( l + v )  a2 
= L21 = 2R -6 
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1 a d2(3-v) d ~i a L = - L g 3 = f F 3 . .  --ad ax2 a6 # 32 

The differences between (4) and (5) arise from two different causes. 

Firstly in (5) the equilibrium equations in terms of the stress resultants, 

and L do not occur in Washizu's the last terms in the operators 

derivation. However they have -No(v + bw/aj$)/R in the second equation 

and -Ni(w + &/dj6)/R2 in the third that do not appear in (5). These 

discrepancies will be shown later to be caused by neglect of the changes 

L13 31 
2 

6 

of the hydrostatic pressure force component that occurs when the shell 

undergoes perturbation rotations and midsurface strains. Secondly the 

other differences that do not involve the prestress terms are due to [4] 

and [l3] using, for the definitions of the stress resultants expressions 

such as 

while in many 

h/2 z 
Nx = J ax(l + E) dz 

-h/2 

ther works, z/R is neglected c mpared to unity. These 

terms are recognizable in (5) as those containirrg 

except L 2 3 ~  L32, and L 

d2 in all operators 

33 
In spite of the efforts of many investigators and as we have 

just partially demonstrated there does not appear to be a generally accepted 

"correcttt set of equations based on the Kirchoff-Lave hypothesis which 

describe the behavior of prestressed thin shells. For many investigations, 
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the  "small s t r a i n  and moderately small rotations" a 

quently been invoked t o  remove the nonlinear terms i n  u a 

the s t r a i n  displacement re la t ions.  While controversy over the linear 

formulation has been very pronounced u n t i l  

from complete agreement on the equations that should be used i n  the non- 

l i nea r  problem. There i s  no in ten t  here t o  devise a new approach t o  the 

general problem but rather t o  review exis t ing knowledge t o  explain cer ta in  

face ts  of the  Sehavior of prestressed cyl indrical  shells of general cross 

section whi l e  re ta ining t h e  assumption of small s t r a ins ,  b u t  admitting 

rotat ions about t h e  normal t o  t h e  midsurface 

umptions has f re -  

recently,  w e  are even further 

Koiter [ ? I ,  Naghdi [6], Kempner [ 8 ] ,  D i l l  [9], Sanders [lo], and 

Budiansky [ll] are among those who have devoted considerable e f f o r t  t o  

geometrically nonlinear shell problems. A s  an example l e t  us consider 

the equations on [lo], which allow f o r  the ro ta t ion  of the s h e l l  element 

about the  normal t o  the  middle surface. With t h i s  degree of complexity 

w e  have, f o r  the strain-displacement re la t ions  
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The terms underlined by dashes represent the  influence of ro ta t ion  about 

t he  normal t o  the  middle surface. 

f i a b l e  t o  state t h a t  the rotat ion normal t o  the middle surface is  markedly 

smaller than the two rotat ions about axes i n  the  plane of the middle surface. 

When t h i s  assumption is j u s t i f i e d  and the  underlined terms are removed 

From (6) we have the s t ra in  displacement re la t ions  which are frequently 

used i n  investigations of s h e l l  s t a b i l i t y .  

nonlinear terms haye been retained only i n  the d i r e c t  s t ra ins ,  leaving the 

curvatures as l inea r  i n  the  displacements. 

ing a l l  terms i n  (6) yields  the fallowing d i f f e r e n t i a l  operators i n  the  

displacement equations of equilibrium f o r  a c i r cu la r  cross section when 

3' = 0 and the  other two prestress  resu l tan ts  are constants1 

In many types of problems it is  jus t i -  

It is  worth pointing out tha t  

Sanders [lo] shows that re ta in-  

xb 
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These operators are self adjoint and differ quite considerably from ( 3 )  

as we would expect since certain large inplane displamments are neglected 

in (7) '  

4.4. Geometrically Non-Linear Thin Circular Cylindrical Shell Analyses 

Alldrwing for Large Strains. 

In studying most of the contributiansluentionedthat are based 

on the small strain assumption, it is soon demonstrated that the displace- 

ment equilibrium equations are self adjoint and thus, for the thin circuar 

cylinder can be written in symmetric form. 

to symmetry in Cartesian cowdinates we have reason to be curious about 

this conflict with B l o t ' s  and Pf'l&er's demonstrations that the equations 

Since self adjointcess reduces 

of elasticity for incremental deformations are non-symmetric in Cartesian 

coordinates. The clue to this paradox comes from the fact that the majority 

of authors on shell theory, neglect, in the strain displacement relations, 

all non-linear terms involving the tangential displacements u and v. 

This means that they assume small strains and rotations, from the start. 

Self adjointness of differential operators, at least as usually defined 

(see e.g. [lg]) has meaning mly for linear equations. Hence when the 

potential energy contains displacement terms to powers higher than the 

second, the self adjointness of the final equations from which the eigen- 

matrix is formed, depends on the assumptions made to linearize the Euler 

equations of the variational method. 

nonlinear terms in u and v are Washizu [12] and&nmann-Armenakas [13] 

Two contributions which retain the 

whose strain dispxacement relations for a circular cylinder are 
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Inserting (8) into the expression for the strain energy, neglect- 

z/R relative to unity and utilizing the calculus of variations in ing 

the time honored manner, we obtain the large displacement equilibrium 

equations which were derived by Washizu using the theorem of virtual 

displacements. They are 

in which we haw used the linearized strain displacement relations 
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These equilibrium equatians consist of terms of two types, namely stress 

resultants and their derivatives plus stress resultants times midsurface 

rotations, which constitute the equations usually found in shell analyses 

which invoke the “small strain’’ assumption. The second type of+ terms are 

those consisting of stress resultants times midsurface strains. 

latter term result from a variational formulation only when the non- 

linear terms in the in lane displacements are retained in the strain- 

displacement relations. 

circular cross section and we introduce into ( 9 )  the assumption that the 

strains are negligible compared to unity, 

identical. 

These 

When equation (4) are particularized for a 

the resulting equations are 

The complexity csf the equations describing the motions relative 

to the prestressed state, depend, to a large measure on the prestressed 

state. A simple situation, of frequent interest, particularly in the 

field of biomechanics is when uniform axial stretch and internal pressure 

constitute the prestressed state. When solving the linear membrane equa- 

tions fa r  this loading, we obtain for a circular cross section NZ and 

as constants and B* vanishes. For non-circular shells the prestress 
XFI 

solution is much more invhlved. 

which the Young’s modulus is independent 

perturbation equations derived from ( 9 )  assume a relatively elegant form. 

To ubtain them, we use the standard technique of inserting Nx = Nx + X i ,  

&/ax = au0/aX + au’/ax etc. 

If we now assume an isotropic shell in 

of the prestressed state the 

0 

extracting all terms involving only the 



zeroth state and assuming t h a t  t he  primed quant i t ies  are a l l  small enough 

for  t h e i r  products t o  be negligible.  

Now w e  may write the  equations f o r  perturbations about a pre- 

stressed state defined by the constant s t r a i n s  i n  d i f f e r e n t i a l  operator 

[Lij1 v + Y 

form a s  

= 0 

where 

= (I + 2Rx 0 + va;) - + - {F (l-v) (1 + a i )  + a; 3- v a;}--$ a2 
L1l ax2 R~ 

Y 

0 0 a2 (1 + 261; + va;, - c . p y  (1 + a$ + ax + Val6  
=22 = R2 ab2 - k? 

1 (1 + 3a0 + 2 v  ax) 3 '+d2 
L23 = 2 # 
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It is clear that these operators are self adjoint f o r  large strains only 

when 

completely Biot's and Pfl?iger's conclusion. 

0 
= L?:, i.e., when the prestress state is hydrostatic, substantiating 

The usual manner in which the 

influence of the prestressed state is illustrated (see for example [14], 

[l?], [16]) is to show that the non-symmetry in Cartesian coordinates 

occurs in the stress strain relations and the degree of asymmetry is of 

the order of the initial stress as divided by the elastic modulus. In 

our derivation the classic symmetric stress strain law was assumed and 

the non-self adjointness was also shown to be of the order of the initial 

strain. In virtually all metallic structures the initial membrane strains 

are indeed negligible compared to unity and the operators in (10) can be 

simplified to those resulting from (4) and (9).  

problems they can be as high 

However in blood flow 

b r  higher than 0.6 and neglecting them is 

less justified. Throughout our discussion it must be borne in mind that 

while an elastic stress strain law is reasonable for the perturbation 

stresses in the blood vessel, but it is not valid for the prestressed 



state. The determination of the  ac tua l  prestressed state i n  blood 

vessels is  extremely d i f f i c u l t  compared w i t h  v i r tua l ly  a l l  m e t a l  s t ructures  

experiments. 

The equations w e  haye discussed are considered typ ica l  ef the  

literature and t o  see how s igni f icant  some of the differences are, let 

us tu rn  t o  the numerical emlua t ion  of the phase veloci t ies .  

To study the impartance of the  assumptions made i n  t h e  shell 

theoried that  have been discussed i n  r e l a t ion  t o  cer ta in  biomechanics 

problems, it is  of i n t e r e s t  t o  compute the phase velocity as a function 

of frequency and prestress levels. Tiie displacement re la t ions  f o r  ax ia l ly  

propagating waves i n  a cylinder of c i rcu lar  cross section w e r e  s u b s t i t u t e d  

i n t o  the equations of motion and the  resu l t ing  eigenvalue problem solved 

for specified wave numbers. The f o r m  of the  displacement re la t ions  was 

U(X, #, t )  = A COS kx COS sy.5 Sin u t  

v(x, 8, t )  = B Sin k~ Sin s# Sin a t  

w(x, 8, t) = c Sin k~ COS s# Sin u t  

These were inser ted i n t o  (7) fo r  Sander's [lo] theory and (10) fo r  

Washizu's [I21 theory and i n t o  ( 5 )  f o r  the Anliker-Mmcwell u t i l i za t ion  of 

Fl&gge's [ k ]  theory and Hez.?rinan-Amrnb~ [l3] theory. 

were a l s o  accmplished using Budiansky's theory [ll]. 

The computations 

The aubsti tutfon 

of' (11) i n t o  ( 5 )  and (7) leads t o  a symmetric matrix because of t he  self 

adjointness of the operators, but t h a t  derived from (10) naturally remains 

nmsymmetric . 
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4.5. Presentation of the JWrnerical Results and Discussion. 

A digital program was written.using a readily available non- 

self-adjoint eigenmlue routine to extract the m o d e s  and frequencies 

for prescribed sbll-fluid parameters and wave number. After using the 

results presented by Anliker and Maxwell [18] to check the accuracy, the 

nondimensioml wave speeds were found as functions of the nondimensional 

frequency for the theories mentioxed previously. 

in Figs. 1 and 2 and correspoad to axi-symmetric waves. 

The results are shown 

The former 

shows the influence Crp axial stretch, while the latter illustrates haw 

the wave speeds vary as a function of transaural pressure. Data for 

the s = 2 waves did not show any differences from the Anliker-Maxwell 

results that could be considered significant for physiological applications 

and therefore have not been illustrated. 

For axi-symmetric waves and No 0, the predictions based on p l =  
[lo], [Ill, [ 2 0 ]  and our equation ( 5 )  agree very closely with each other 

for the type I and type I11 waves. 

solely due tu the different assumption concerning the prestress applicra- 

The lack of agreement with [I81 is 

tion. The behavior of Washizu's theory will be reviewed presently. 

A somewhat surprising result is that unlike other shell equa- 

tions, those of Sanders and Washizu predict a cut-off frequency for the 

type I1 or torsion waves whenever the shell is subjected to transmural 

pressures (see Fig. 2). The cause for this can be seen by noting that 

the equation for axi-symmetric torsion wayeB is 

a2v L22 v - - - 
at2 - 



since fur s = 0, LE = L21 = L32 = L2? = 0 and the  equi l ibr ium equa- 

tion for the  circumferential  to rs iana l  direct ion becmes uncoupled from 

the  other two. 
1 

For the  Anliker-€@xwell 1181 u t i l i za t ion  of FLiig@;e's 

theory we have the charac te r i s t ic  equation 

i n  which the term vE* vanishes when we  use ( 5 ) .  According t a  t h i s  equa- 

t i on  the  tors ion waves are nondispersive and have no cut-off frequency 

below which they do not  propagate. This is  i n  contradiction with the other 

two theorkes mntianed, 

Washizu's [l2] theory 

6 

For example, from (10) w e  have according t o  

while Sanders' [lo] theory yields  

2 I n  both of' these cases it is the  last t e r m  

both the  d i s p e r s b n  and the  cut-off frequency f r 6 m  non-zero transmural 

pressure. 

(H*/pk ) that introduces PI 

As the  waw? number approaches zero, so does t he  freqwncy and 

the wave speed becomes very large as t h e  frequency approaches zero, and 

we bbtain t h e  cut-off frequency. The existence of the  cut-off frequencies 
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i s  demonstrated by noting that f o r  f i n i t e  values of 

In fac t ,  the ab- equations show that . 62 = No/p for zero wave nuniber. 

Therefore u = (No/p)1/2 i s  the cut-off frequency below which waves do 

not propagate. 

6, k can be zero. 

E3 
B 

This behavior f o r  t he  ro ta t iona l ly  symmetric tmdrfon waxes i s  

so completely contrary t a  a l l  experimenhl evidence that it cannot be 

glossed over. 

s t a t i c  pressures i s  given i n  the paper7JyiHemmnn and Shaw [20] (which 

uses the equations derived i n  [ l 3 ] ) .  

off frequency arises when cer ta in  terms are omitted i n  the  derivation of 

the equations by neglecting the change i n  the d i rec t ion  of the  hydrostatic 

pressure force induced by the perturbation rotat ions.  

terms and use equation (16) of [20], the equilibrium condition f o r  the 

ro ta t iona l ly  symmetric tors ion mode and f o r  pressures act ing on the  shell 

midsurface is 

An explanation f o r  t he  case of she l l s  subjected t o  hydro- 

It i s  shown that the erroneous cut- 

If w e  r e t a in  these 

2 where AF 

a r i s ing  from the displacement. 

midsurface the mcrment cclmponents Am and mZ, discussed i n  [ l3 ] ,  [l7] 

and [20], are identically zero. If w e  subs t i tu te  the above expression 

N0v/R , i s  the change of' the circumferential force component b =  6 
By taking the pressure t o  a c t  on the shell 

B 

f o r  i n  (E) it becomes b 
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The questionable terms i n  Washim's and Sanders' theories has been 

cancelled out by *AI? 

This demonstrates the d i f f i c u l t i e s  t ha t  can arise when the displacements 

and rotat ions of a prestressed system are being neglected while t he  stress 

resu l tan ts  are retained. For many metal s h e l l  analyses t h i s  approximation 

may well be en t i r e ly  sat isfactory.  

t he  displacements and rotat ions are generally much la rger  than i n  metal 

s t ructures  and must be properly accounted fo r .  For a c i rcu lar  cyl indrical  

shell, t h i s  i s  accomplished by using e i the r  the equations of [ll] or those 

of [13] and [ 2 0 ] ,  which reduce t o  those of Fl'Egge [4]. 

given by [18] are indeed correct .  

and the torsion waves are now a l so  nondispersive. P, 

In the case of blood vessels howeuer, 

Hence the r e s u l t s  

However, i f  w e  accept the reasoning of Armenakas and Herrmann 

i n  [l'j'] which is  also employed i n  t h e i r  subsequent papers, e.$., [ 2 0 ] ,  

the tors ion waves r e t a i n  t h e i r  cut-off frequency i n  the  case of constant 

d i rec t iona l  pressure since DF i s  zero i n  th i s  s i tua t ion .  This produces 

a cut-off frequency and therefore results which w e  a l s o  f ind  t o  be a t  

variance with OUT in tu t t ion .  

6 

Consider an i n f i n i t e l y  long she l l8hoee  in te rna l  pressure does 

not change direct ion and which i s  undergoing ro ta t iona l ly  symmetric 

to rs iona l  osc i l la t ions .  

narnely &/ax does indeed vanish. Therefore, DFx is  zero. However, 

t he  other campment of rotat ion of the normal t o  midsurface is  

therefore not zero and AF is  again equal t o  Nov/R. Thus the extraneous 

term causing the cut-off frequency is always cancelled out. 

The rotat ion about the tangent ia l  base vector, 

v/R, and 

PI d 
This small 



modification is  of l i t t l e  physical significance s ince  the  f l u i d  pressure 

is hydrostatic i n  v i r tua l ly  a~ cases of prac t ica l  i n t e re s t .  

Tbe contributions t o  the  equilibrium equations of' the  terms 

involving the  applied pressure t i m e s  the  perturbation rotat ions and s t r a ins  

are accounted f o r  by Budiansky [11]. The two i n p h n e  equilibrium equat ims 

contain the rotatirms times the hydrostatic pressure while i n  the normal 

equation the pressuse is multiplied by the  sum of the inplane strains. 

s i tua t ion  eptirely analagous t u  the one involving the behavior of the 

tors ion waves, occurs i n  the th i rd  equilibrium equation. The var ia t ion 

of the s t r a i n  energy yields a t e r m  which i s  cancelled by the 

i n  the  expression accounting f o r  the hydrostatic pressure. 

of t h i s  pressure term is the cause of the behavior of Washizu's equations 

and a l l  others which make the same approximation. 

predicts phase ve loc i t ies  tha t  are independent of i n t e rna l  pressurization 

for types I and TI1 waves by properly accounting for the change i n  direc- 

t i on  of the pressure. This i s  a l s o  t rue  i n  the theories  of [ll] and E201 

i n  addition t o  OUT form of Fl*&gels 

the dependence OD i n t e rna l  pressure of phase ve loc i t ies  f o r  the ro ta t iona l ly  

symmetric m o d e s  i n  [18] is due t o  the method i n  which the prestresses are 

applied. 

A 

pw/R element 

The neglect 

Thus Sanders' theory [lo] 

theory i n  ( 5 ) .  The only reason f o r  

Another item of i n t e r e s t  i n  connection with the torsion modes 

is  that the r e s u l t s  of E181 do not exhibi t  the same dependence on axial 

prestress  a d  does Fig. 2. 

the different methods i n  which the  prestress  is applied. In  our applica- 

t ions,  w e  did not  r e s t r i c t  the axial motion and hence applying the pressure 

This discrepancy has been explained by noting 
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does not contribute to the axial prestress. It should be mentioned that 

this latter assumption affects the torsional phase velocLties. However, 

it is not necessarily representative of blood vessels under "in vivo" 

conditions since they are anchored by branches and connective tissue and 

therefore do not change their length with pressure.. 

A third item of interestillustrated in Fig. 1 is the consistent 

nondispersive character of the type I11 waves. Only Sanders' theory pre- 

dicts axial phase velocities independent of axial stretch while the other 

theories applied, in particular Washizu's, show a strong influence of 

axial stretch. The reason for this is to be found in the absence of the 

tern in the expression for the axial strain and its influence 

on the operator L ll. For rotationally symmetric waves, the Lll coeffi- 

cient in the frequency determinant for Sanders' theory is simply 

in the other two theories it is 

k2 while 

k2 times a function of the axial stretch 

which accounts for the noted dependence. 

Another interesting result of the method of application of the 

prestress comes to light when we note that in ( 5 ) ,  all the phase velocities 

are independent of internal pressurization. This disagrees with [IS] only 

because of the previously mentioned application of the prestress, which 

results in terms involving Poisson's ratio times the circumferential pre- 

stress resultants. 

of waves are independent of pressurization within drawing accuracy of the 

In our application of Fl*hge's theory, all three types 

curves shown in Fig. 2. 

Attention has been drawn to the fact that the "large strain" 

form of Washizu's equations are non-self-adjoint and thus we know from 
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Wave 

well established theory (e.g.  [ l g ] ) t h a t  the eigenvalues of the basic system 

and i ts  adjoint  a r e  ident ical ,  but t ha t  the  eigenvectors of he two systems 

a re  d i f fe ren t  and form a biorthogonal s e t .  The adjoints  of the operators 

i n  (12) are easily found by replacing 

off-diagonal terms. 

d i f fe ren t  and w e  provide the following tab le  as typ ica l  r e su l t s .  

by 8 ;  and vice versa i n  t h e  

The modal amplitude coeff ic ients  were indeed s l igh t ly  

Shel l  Theory Modal Displacement 1 

TABLE I 

TYPe 

I 

I1 

I11 

TYPICAL MODAL COEJ?FICIENTS FOR THE ANLIXER-MAXWELL AND 

WASHIZU THEORY FOR = 0.4, No 0 AND k = 3.0 b =  

Washizu [12] Washizu [12] 
Anliker-Maxwell [IS] Basic System Ad j oint  Sys t e m  

Axial Torsion Radial Axial Torsion Radial A x i a l  Torsion Radial 

-0.044 0 1.0 -0.0469 o 1 .0  - .0335 0 l . G  

0 1.0 0 0 1.0 0 0 1.0 0 

1.0 0 0.044 1.0 0 0.0335 1.0 0 .0469 

For t h i s  demonstration a l l  coeff ic ients  l e s s  than 

have been replaced by zeroes i n  Table I. 

I O m 5  i n  absolute value 

These r e su l t s  i l lus t ra te  the  theory by showing t h a t  f o r  the self 

adjoint  operators of [18], the modes are orthogonal, while those of [12] 

f o r  both the basic and ad jo in t  equations are not orthogonal, but they are 

biorthogonal. However, the  f a c t  t h a t  the modes predicted by [12] are not 

qui te  orthog 1 is of negligible importance i n  the study of pulse waves. 



4.6. Conclusions. 

13Le phsse velocities predicted by %he small s t r a i n  theories  of 

H 

theory [4] are considered t o  be correct. 

than those ofl A a l i k e r  and Maxwetll [I81 with a d i f f e ren t  assumption con- 

cerning t h e  application of the prestresses.  

essentially independent of in te rna l  hydaostatic p res su re  if '  the  cylinder 

mils are na t  ax ia l ly  constrained. 

and SUUSW [ea], Budimsky 1111 and OUT application of Fl*%gge's 

Our r e s u l t s  are nothing more 

A l l  three wave speeds are 

Both Sand- [lo] and Washieu [E], i n  d id i t ion  t o  many other 

authors predict  a cut-off frequency below which no tors ion waves are 

propaefated for non zero transmural pressure. 

caused by neglecting the  force  component induced by the per turba t im 

ro ta t ion  of the applied pressure. 

t r ibu t ions  t o  the  equilibrium accounts for the  cmrectness of the theories  

mentioned. 

Budiansky [ll] are recomended. 

This is demonstrated t o  be 

The impartance of including these con- 

For fu ture  studies on shells of general geometry, those of 

The nonself adjointness of the  large s t r a i n  theory of Washizu i s  

whom t o  be af negl i@ble importance f o r  t he  physiological problems of 

waw propagation i n  the arterial system.  



0 
c = c / c  
-2 2 
c = E/6(l-v ) 0 

2 d =  

i? 

h = E/Eo 

k = 2rz / h  
0 

Lij 

L a d  parameters 

Nondimensional phase velocity 

Normalizing phase velocity 

h2/12. 

Normalizing Youngls modul l z s  

fiinear midsurface strains 

Nondimensional she l l  wall thickness 

Nondimensional waye number 

Differential operators 

Midsurface strains and rotations 

M ,M ,M = ka(l-v2)/E,etc. Nondimensional moment resultants a: B aB 

2 -- M ,N ,N = f f a ( l - v  )Eh,etc. Nondimensional force reaultants a B aB 

R R = Ra& etc. Nondimensional radii of curvature a’ B 

- 
Wormalizing geometric dimnsion RO 

- -  
u, v, w = u / R ~ ,  etc. Nordimensional midsurface Bisplacements in 

the axial, tangential and normal directions 
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2 - -  X,Y,Z = z (1 -v  )/E h, etc. 

a, B 

Superscripts 

0 

Axial and circumferential coordinates of 

a circular cylinder 

Nondimensional applied farce resultants 

Axial and circumferential coordinates of 

a general cylinder 

Nonlinear midsurface strains 

Curvatwes 

Nondimensional wave length 

Nondimensional density 

Normalizing frequency 

Rotations 

a4( )/acl4 + 2a4( )/B2k2ap2 + a4( )/B 4 4  a@ 

Denotes a dimensional quantity 

Denotes a prestress quantity 
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